Image scaling

本文介绍了一种使用双线性插值法实现图像缩放的算法,并提供了具体的实现步骤。该方法适用于图像的放大和缩小处理,能够较好地保持图像质量。

Question:

Write a function that takes a gray image and a target size as input, and generates the scaled imageas output. Please use bi-linear for interpolation. The function prototype is “scale(input img,size) → output img”, where “input img” and “output img” are two-dimensional matricesstoring images, and “size” is a tuple of (width, height) defining the spatial resolution of output.You can modify the prototype if necessary.For the report, please load your input image and use your “scale” function to:

1. Down-scale to 192 × 128 (width: 192, height: 128), 96 × 64, 48 × 32, 24 × 16 and 12 × 8,then manually paste your results on the report. 

2. Down-scale to 300 × 200, then paste your result. 

3. Up-scale to 450 × 300, then paste your result. 

4. Scale to 500 × 200, then paste your result.

5. Detailedly discuss how you implement the scaling operation, i.e., the “scale” function, in lessthan 2 pages. Please focus on the algorithm part. If you have found interesting phenomenonsin your scaling results, analyses and discussions on them are strongly welcomed and maybring you bonuses. But please don’t widely copy/paste your codes in the report, since yourcodes are also submitted. 

Answer:

function [output] = scale1(I, Width, Height)
img = imread(I);
[row,col] = size(img);
%确定缩放比例
ratioH = Height/row;
ratioW = Width/col;
output = zeros(Height,Width);
%拓宽矩阵,赋值,处理边界
temp = zeros(row+2,col+2);
%拷贝原矩阵
for x = 1:row
    for y = 1:col
        temp(x+1,y+1) = img(x,y);
    end
end
%边界处理
for y = 1:col
    temp(1,y+1) = img(1,y);
    temp(row+2,y+1) = img(row,y);
end
for x = 1:row
    temp(x+1,1) = img(x,1);
    temp(x+1,col+2) = img(x,col);
end
temp(1,1) = img(1,1);
temp(1,col+2) = img(1,col);
temp(row+2,1) = img(row,1);
temp(row+2,col+2) = img(row,col);
%双线性内插值算法
for j = 1:Width
    for i = 1:Height
        jj = (j-1)/ratioW;
        ii = (i-1)/ratioH;
        pj = floor(jj);
        pi = floor(ii);
        u = ii - pi;
        v = jj - pj;
        pi = pi + 1;
        pj = pj + 1;
        output(i,j) = (1-u)*(1-v)*temp(pi,pj) +(1-u)*v*temp(pi,pj+1)...
                    + u*(1-v)*temp(pi+1,pj) +u*v*temp(pi+1,pj+1);
    end
end
output = uint8(output);
figure
imshow(output)
end

algorithm illustrate:

对图片的缩放是通过双线性差值法实现的。具体算法如下:对于一个目的像素,设置坐标通过反向变换得到的浮点坐标为(i+u,j+v) (其中 i、j 均为浮点坐标的整数部分,u、v 为浮点坐标的小数部分,是取值[0,1)区间的浮点数),则这个像素得值 f(i+u,j+v) 可由原图像中坐标为 (i,j)、(i+1,j)、(i,j+1)、(i+1,j+1)所对应的周围四个像素的值决定,即:f(i+u,j+v) = (1-u)(1-v)f(i,j) + (1-u)vf(i,j+1) + u(1-v)f(i+1,j) + uvf(i+1,j+1)其中 f(i,j)表示源图像(i,j)处的的像素值。通过对目标图像的每个像素点进行如上运算估值即可。对于边界像素点,我是通过拓宽了原图像对应矩阵来避免越界。



### 无损缩放技术在图像和音频处理中的应用 #### 图像的无损缩放 对于图像而言,无损缩放指的是放大或缩小图片尺寸而不损失任何原始数据的技术。一种实现方式是通过多网格反投影超分辨率方法[^1]。这种方法能够有效地恢复高分辨率图像细节,在保持原有质量的同时扩大图像规模。 此外,还有基于插值算法的方式来进行无损缩放操作。常见的有最近邻域法、双线性插值以及三次卷积插值等。这些方法可以在一定程度上保留图像特征,但在极端情况下可能会引入伪影或其他失真现象。 ```python import cv2 import numpy as np def lossless_image_scaling(image_path, scale_factor): img = cv2.imread(image_path) height, width = img.shape[:2] # 使用OpenCV库进行无损缩放 resized_img = cv2.resize(img, None, fx=scale_factor, fy=scale_factor, interpolation=cv2.INTER_NEAREST) return resized_img ``` #### 音频的无损缩放 关于音频信号的无损缩放,则涉及到改变播放速度而不会影响音调的变化过程。这通常采用时间拉伸(Time-Stretching)技术和移调(Pitch Shifting)来完成。其中,相位 vocoder 是一种广泛应用的时间频率表示模型,它允许独立调整时间和频率参数从而达到理想的缩放效果。 Python 中可以利用 `librosa` 库轻松地执行这样的变换: ```python import libroso def time_stretch(y, rate): y_stretched = librosa.effects.time_stretch(y, rate) return y_stretched ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值