class Solution {
public:
int prim(int n, vector<vector<int>>& matrix) {
int ans = 0;
vector<int> used(n), cost(n, INT_MAX);
cost[0] = 0;
while (true) {
int v = -1;
for (int u = 0; u < n; u++) {
if (!used[u] and (v == -1 or cost[u] < cost[v])) {
v = u;
}
}
if (v == -1) break;
used[v] = 1;
ans += cost[v];
for (int u = 0; u < n; u++) {
cost[u] = min(cost[u], matrix[v][u]);
}
}
return ans;
}
int minCostConnectPoints_prim(vector<vector<int>>& points) {
int n = points.size();
vector<vector<int>> matrix(n, vector<int>(n));
for (int i = 0; i < n; i++) {
for (int j = i; j < n; j++) {
int d = abs(points[i][0] - points[j][0]) + abs(points[i][1] - points[j][1]);
matrix[i][j] = matrix[j][i] = d;
}
}
return prim(n, matrix);
}
struct Edge {
int d, i, j;
bool operator< (const Edge& e) const {
return d < e.d;
}
};
int kruskal(int n, vector<Edge>& edges) {
vector<int> p(n);
iota(p.begin(), p.end(), 0);
auto find = [&](auto&& find, int v) {
if (p[v] == v) {
return v;
}
return p[v] = find(find, p[v]);
};
auto merge = [&] (int v, int w) {
int pv = find(find, v);
int pw = find(find, w);
if (pv == pw) return;
p[pv] = pw;
};
auto is_connected = [&](int v, int w) {
return find(find, v) == find(find, w);
};
int ans = 0;
for (auto& e : edges) {
if (is_connected(e.i, e.j)) {
continue;
}
ans += e.d;
merge(e.i, e.j);
}
return ans;
}
int minCostConnectPoints(vector<vector<int>>& points) {
int n = points.size();
vector<Edge> edges;
for (int i = 0; i < n; i++) {
for (int j = i + 1; j < n; j++) {
int d = abs(points[i][0] - points[j][0]) + abs(points[i][1] - points[j][1]);
edges.push_back({d, i, j});
}
}
sort(edges.begin(), edges.end());
return kruskal(n, edges);
}
};
c++ 最小生成数
于 2024-09-30 23:55:14 首次发布