Android中使用Volley框架进行网络请求

本文介绍了一个使用Volley框架进行GET请求的具体示例。通过创建一个简单的Android应用,演示了如何配置请求队列、设置请求URL及监听器,并添加请求参数。

Volley框架进行网络请求,简单的请求方法,还望各位大神多多指教】
实现方法:需要一个第三方jar包

package com.example.volleyhttp;

import java.util.HashMap;
import java.util.Map;

import com.android.volley.Request.Method;
import com.android.volley.AuthFailureError;
import com.android.volley.RequestQueue;
import com.android.volley.Response;
import com.android.volley.Response.Listener;
import com.android.volley.VolleyError;
import com.android.volley.toolbox.StringRequest;
import com.android.volley.toolbox.Volley;

import android.app.Activity;
import android.os.Bundle;
import android.util.Log;
import android.view.Menu;
import android.view.MenuItem;
import android.widget.Toast;

/**
 * 
 * 使用volley实现网络请求
 * @author 浅议爱
 *
 */
public class MainActivity extends Activity {


    @Override
    protected void onCreate(Bundle savedInstanceState) {
        super.onCreate(savedInstanceState);
        setContentView(R.layout.activity_main);

        //定义网络请求方法
        gethttp();//请求方式get
    }

    private void gethttp() {
        // TODO Auto-generated method stub
        //定义接口
        RequestQueue queue = Volley.newRequestQueue(this);
        String url="http://www.2cto.com/kf/201508/437176.html";
        StringRequest request=new StringRequest(Method.GET, url, new Listener<String>() {

            //请求成功 
            @Override
            public void onResponse(String response) {
                // TODO Auto-generated method stub
                String str = response.toString();//请求成功后,接口里面的数据
//              Log.i("TAG", str.toString());
                Log.i("TAG", response+"=======response=======");

        }
        //请求失败
        }, new Response.ErrorListener() {

            @Override
            public void onErrorResponse(VolleyError error) {
                // TODO Auto-generated method stub
                Toast.makeText(MainActivity.this,"请求失败", 0);
            }
        })
        //添加请求参数,使用map集合添加,直接写在该方法体里面
        {
            @Override
            protected Map<String, String> getPostParams()
                    throws AuthFailureError {
                // TODO Auto-generated method stub
                Map<String, String> map=new HashMap<String, String>();
                map.put("name", "武小鹏");
                return map;
            }
        };
        queue.add(request);

    }
}
内容概要:本文介绍了ENVI Deep Learning V1.0的操作教程,重点讲解了如何利用ENVI软件进行深度学习模型的训练与应用,以实现遥感图像中特定目标(如集装箱)的自动提取。教程涵盖了从数据准备、标签图像创建、模型初始化与训练,到执行分类及结果优化的完整流程,并介绍了精度评价与通过ENVI Modeler实现一键化建模的方法。系统基于TensorFlow框架,采用ENVINet5(U-Net变体)架构,支持通过点、线、面ROI或分类图生成标签数据,适用于多/高光谱影像的单一类别特征提取。; 适合人群:具备遥感图像处理基础,熟悉ENVI软件操作,从事地理信息、测绘、环境监测等相关领域的技术人员或研究人员,尤其是希望将深度学习技术应用于遥感目标识别的初学者与实践者。; 使用场景及目标:①在遥感影像中自动识别和提取特定地物目标(如车辆、建筑、道路、集装箱等);②掌握ENVI环境下深度学习模型的训练流程与关键参数设置(如Patch Size、Epochs、Class Weight等);③通过模型调优与结果反馈提升分类精度,实现高效自动化信息提取。; 阅读建议:建议结合实际遥感项目边学边练,重点关注标签数据制作、模型参数配置与结果后处理环节,充分利用ENVI Modeler进行自动化建模与参数优化,同时注意软硬件环境(特别是NVIDIA GPU)的配置要求以保障训练效率。
内容概要:本文系统阐述了企业新闻发稿在生成式引擎优化(GEO)时代下的全渠道策略与效果评估体系,涵盖当前企业传播面临的预算、资源、内容与效果评估四大挑战,并深入分析2025年新闻发稿行业五大趋势,包括AI驱动的智能化转型、精准化传播、首发内容价值提升、内容资产化及数据可视化。文章重点解析央媒、地方官媒、综合门户和自媒体四类媒体资源的特性、传播优势与发稿策略,提出基于内容适配性、时间节奏、话题设计的策略制定方法,并构建涵盖品牌价值、销售转化与GEO优化的多维评估框架。此外,结合“传声港”工具实操指南,提供AI智能投放、效果监测、自媒体管理与舆情应对的全流程解决方案,并针对科技、消费、B2B、区域品牌四大行业推出定制化发稿方案。; 适合人群:企业市场/公关负责人、品牌传播管理者、数字营销从业者及中小企业决策者,具备一定媒体传播经验并希望提升发稿效率与ROI的专业人士。; 使用场景及目标:①制定科学的新闻发稿策略,实现从“流量思维”向“价值思维”转型;②构建央媒定调、门户扩散、自媒体互动的立体化传播矩阵;③利用AI工具实现精准投放与GEO优化,提升品牌在AI搜索中的权威性与可见性;④通过数据驱动评估体系量化品牌影响力与销售转化效果。; 阅读建议:建议结合文中提供的实操清单、案例分析与工具指南进行系统学习,重点关注媒体适配性策略与GEO评估指标,在实际发稿中分阶段试点“AI+全渠道”组合策略,并定期复盘优化,以实现品牌传播的长期复利效应。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值