NLP with Java---Overview

本文概述了自然语言处理中的关键任务,包括文本处理任务、理解NLP模型、数据准备等。详细介绍了从文本分割到实体识别的过程,并探讨了模型选择、训练及验证的基本步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Overview of text processing tasks

  • Finding Parts of Text–>split/tokenization
  • Finding Sentences–>Sentence Boundary Disambiguation (SBD)
    • Finding People and Things–>Name Entity Recognition
    • Detecting Parts of Speech–>POS Tagging
  • Classification(with label)/Clustering(without label)
  • Extracting Relationships–>IR
  • Combined Approaches
Split/Tokenization-->Sentence(SBD)-->NER-->POS-->Classification/Cluster-->IR

Understanding NLP models

The basic steps include:

  • Identifying the task
  • Select a model
    • Understanding the problem domain and
      the required quality of results permits us to select the appropriate model
  • Building and trainning the model
    • Training a model is the process of executing an algorithm against a set of data, formulating the model, and then verifying the model
    • labeled samples or dataset is called a corpus
  • Verifying the model
    • split sample and test sets
    • Often, only part of a corpus is used for training
      while the other part is used for verification
  • Using the model

Preparing Data

This includes data for training purposes and the data that needs to be processed.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值