|
Language:
Common Subsequence
Description
A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = < x1, x2, ..., xm > another sequence Z = < z1, z2, ..., zk > is a subsequence of X if there exists a strictly increasing sequence < i1, i2, ..., ik > of indices of X such that for all j = 1,2,...,k, x
ij = zj. For example, Z = < a, b, f, c > is a subsequence of X = < a, b, c, f, b, c > with index sequence < 1, 2, 4, 6 >. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y.
Input
The program input is from the std input. Each data set in the input contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct.
Output
For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.
Sample Input abcfbc abfcab programming contest abcd mnp Sample Output 4 2 0 Source |
建立状态转移方程(递推式)
用dp[i][j]表示s[1]……s[i]与t[1]……t[j]的最长公共子序列的长度
则有dp[0][j]=dp[i][0]=0。
if(s[i+1]==t[j+1]) 则dp[i+1][j+1]=dp[i][j]+1;
else dp[i+1][j+1]=max(dp[i][j+1],dp[i+1][j])。
AC代码:
#include<iostream>
#include<cstring>
using namespace std;
int n,m;
int dp[1005][1005];
char s[1005],t[1005];
void solve()
{
for(int i=0;i<n;i++){
for(int j=0;j<m;j++){
if(s[i]==t[j]) dp[i+1][j+1]=dp[i][j]+1;
else dp[i+1][j+1]=max(dp[i][j+1],dp[i+1][j]);
}
}
cout<<dp[n][m]<<endl;
}
int main()
{
while(cin>>s>>t){
n=strlen(s);
m=strlen(t);
solve();
}
return 0;
}

本文详细介绍了最长公共子序列(LCS)问题的定义及解决方法。通过动态规划算法求解两个字符串的最长公共子序列长度,并给出了具体的实现代码。
644

被折叠的 条评论
为什么被折叠?



