ThreadLocal ThreadLocalMap hash冲突线性探测 ThreadLocal.set(T value) ThreadLocal源码 Thread对象ThreadLocaMap

需求场景:每个线程处理任务,存取一些局部变量在当前线程中。

1. ThreadLocal 简单使用

    public static void main(String[] args) {
        // 当前线程存入字符串类型
        ThreadLocal<String> threadLocal = new ThreadLocal<>();
        //1.存入数据
        threadLocal.set("sfdfd");

        //2.获取数据
        String value = threadLocal.get();

        System.out.println(value);

        //3.最终需要调用remove. 防止内存泄露
        threadLocal.remove();
    }

2. 下为openjdk17源码:

    实现最终是为需求服务的:每个线程存一份自己独有的,可以包涵多个类型数据,数据量不大。  

    ThreadLocal 数据最终是放入Thread类内部,那么如何放呢。包装下:ThreadLocalMap类就出现了(一个静态内部类)。作用就是存放ThreadLocal数据。使当前线程能保存多个ThreadLocal对象。List也可以存ThreadLocal,但是查找效率不如map

   2.1 set方法:

    /**
     * Sets the current thread's copy of this thread-local variable
     * to the specified value.  Most subclasses will have no need to
     * override this method, relying solely on the {@link #initialValue}
     * method to set the values of thread-locals.
     *
     * @param value the value to be stored in the current thread's copy of
     *        this thread-local.
     */
    public void set(T value) {
        Thread t = Thread.currentThread();
        ThreadLocalMap map = getMap(t);
        if (map != null) {
            map.set(this, value);
        } else {
            // 创建ThreadLocalMap对象。存入第一条数据
            // 有参构造方法
            createMap(t, value);
        }
    }


    /**
     * Get the map associated with a ThreadLocal. Overridden in
     * InheritableThreadLocal.
     *
     * @param  t the current thread
     * @return the map
     */
    ThreadLocalMap getMap(Thread t) {
        return t.threadLocals;
    }


        /**
         * Set the value associated with key.
         *
         * @param key the thread local object
         * @param value the value to be set
         */
        private void set(ThreadLocal<?> key, Object value) {

            // We don't use a fast path as with get() because it is at
            // least as common to use set() to create new entries as
            // it is to replace existing ones, in which case, a fast
            // path would fail more often than not.

            Entry[] tab = table;
            int len = tab.length;
            int i = key.threadLocalHashCode & (len-1);

            for (Entry e = tab[i];
                 e != null;
                 e = tab[i = nextIndex(i, len)]) {
                if (e.refersTo(key)) {
                    e.value = value;
                    return;
                }

                if (e.refersTo(null)) {
                    replaceStaleEntry(key, value, i);
                    return;
                }
            }

            tab[i] = new Entry(key, value);
            int sz = ++size;
            if (!cleanSomeSlots(i, sz) && sz >= threshold)
                rehash();
        }

2.1.2 上述采用了线性探测法处理hash冲突,他拆开分为了两部分:

# 使用hashcode 对Entry[]数组 取余数,判断放在数组 Entry[]第几个位置     

int i = key.threadLocalHashCode & (len-1);
# 线性探测,如果获取不到数据则+1  取得下一个位置  
private static int nextIndex(int i, int len) {
    return ((i + 1 < len) ? i + 1 : 0);
}

 2.1.3 什么是线性探测法:

         线性冲突:从发生冲突的位置开始,依次向后探测,直到寻找到下一个空位置为止。

         为什么使用线性冲突而不是像hashMap一样,使用拉链法:

         1. 减少内存占用。

         2. 简单易实现

         3. 适合小规模数据

         4. 更好利用cpu缓存 线性探测法使用一个连续的数组来存储数据。当 CPU 访问数组中的某个元素时,缓存不仅会加载该元素,还会预取相邻的几个元素到缓存中

         劣势:

                 hash元素增加,hash冲突多的话,会频繁遍历,导致效率降低

                 会产生空间分布不均匀

2.2 get()

    /**
     * Returns the value in the current thread's copy of this
     * thread-local variable.  If the variable has no value for the
     * current thread, it is first initialized to the value returned
     * by an invocation of the {@link #initialValue} method.
     *
     * @return the current thread's value of this thread-local
     */
    public T get() {
        Thread t = Thread.currentThread();
        ThreadLocalMap map = getMap(t);
        if (map != null) {
            ThreadLocalMap.Entry e = map.getEntry(this);
            if (e != null) {
                @SuppressWarnings("unchecked")
                T result = (T)e.value;
                return result;
            }
        }
        return setInitialValue();
    }

        /**
         * Get the entry associated with key.  This method
         * itself handles only the fast path: a direct hit of existing
         * key. It otherwise relays to getEntryAfterMiss.  This is
         * designed to maximize performance for direct hits, in part
         * by making this method readily inlinable.
         *
         * @param  key the thread local object
         * @return the entry associated with key, or null if no such
         */
        private Entry getEntry(ThreadLocal<?> key) {
            int i = key.threadLocalHashCode & (table.length - 1);
            Entry e = table[i];
            //返回的键对象和传入的 key 是否相等
            if (e != null && e.refersTo(key))
                return e;
            else
                return getEntryAfterMiss(key, i, e);
        }

2.3 remove()

   /**
     * Removes the current thread's value for this thread-local
     * variable.  If this thread-local variable is subsequently
     * {@linkplain #get read} by the current thread, its value will be
     * reinitialized by invoking its {@link #initialValue} method,
     * unless its value is {@linkplain #set set} by the current thread
     * in the interim.  This may result in multiple invocations of the
     * {@code initialValue} method in the current thread.
     *
     * @since 1.5
     */
     public void remove() {
         ThreadLocalMap m = getMap(Thread.currentThread());
         if (m != null) {
             m.remove(this);
         }
     }
        /**
         * Remove the entry for key.
         */
        private void remove(ThreadLocal<?> key) {
            Entry[] tab = table;
            int len = tab.length;
            int i = key.threadLocalHashCode & (len-1);
            for (Entry e = tab[i];
                 e != null;
                 e = tab[i = nextIndex(i, len)]) {
                if (e.refersTo(key)) {
                    e.clear();
                    // 删除在数组中的元素
                    // 删除老的entry对象
                    expungeStaleEntry(i);
                    return;
                }
            }
        }


        /**
         * Expunge a stale entry by rehashing any possibly colliding entries
         * lying between staleSlot and the next null slot.  This also expunges
         * any other stale entries encountered before the trailing null.  See
         * Knuth, Section 6.4
         *
         * @param staleSlot index of slot known to have null key
         * @return the index of the next null slot after staleSlot
         * (all between staleSlot and this slot will have been checked
         * for expunging).
         */
        private int expungeStaleEntry(int staleSlot) {
            Entry[] tab = table;
            int len = tab.length;

            // expunge entry at staleSlot
            tab[staleSlot].value = null;
            tab[staleSlot] = null;
            size--;

            // Rehash until we encounter null
            Entry e;
            int i;
            for (i = nextIndex(staleSlot, len);
                 (e = tab[i]) != null;
                 i = nextIndex(i, len)) {
                ThreadLocal<?> k = e.get();
                if (k == null) {
                    e.value = null;
                    tab[i] = null;
                    size--;
                } else {
                    int h = k.threadLocalHashCode & (len - 1);
                    if (h != i) {
                        tab[i] = null;

                        // Unlike Knuth 6.4 Algorithm R, we must scan until
                        // null because multiple entries could have been stale.
                        while (tab[h] != null)
                            h = nextIndex(h, len);
                        tab[h] = e;
                    }
                }
            }
            return i;
        }

3. 思考

    3.1 ThreadLocal 有意思地方,ThreadLocal最终存放在了Thread类内部,用ThreadLocalMap进行接收。ThreadLocalMap是ThreadLocal的一个静态内部类。Thread 有个threadLocals 对象 类型就是ThreadLocalMap

     3.2 使用了线性探测来解决hash冲突问题。线性探测就是hash对数组长度取余后,如果发生冲突,那么则对当前槽位循环,每次加1

     3.3 弱引用理解:

                              ThreadLocalMap的key 为threadlocal 且为弱引用. 我自己的理解为thread短暂时间内不会被回收,但是又想threadlocal在不使用以后把他干掉,所以使用了弱引用。

                              如果将ThreadLocalMap的key设置为强引用,使用完以后,是需要等待当前线程对象被销毁,他的ThreadLocalMap, ThreadLocal才会被删除。主要就是因为对象内套了一层又一层。又想把最里面的对象给优化掉,所以才为弱引用。当ThreadLocal被回收后,ThreadLocalMap也会判断当前key是否存在,如果不存在value也置空干掉。

    3.4 ThreadLocalMap 扩容:

          3.4.1 ThreadLocal的set方法截取最后扩容部分:

 if (!cleanSomeSlots(i, sz) && sz >= threshold)
                rehash();

          3.4.2 rehash()方法


        /**
         * Re-pack and/or re-size the table. First scan the entire
         * table removing stale entries. If this doesn't sufficiently
         * shrink the size of the table, double the table size.
         */
        private void rehash() {
            expungeStaleEntries();

            // Use lower threshold for doubling to avoid hysteresis
            if (size >= threshold - threshold / 4)
                resize();
        }

            3.4.3 resize()

        /**
         * Double the capacity of the table.
         */
        private void resize() {
            Entry[] oldTab = table;
            int oldLen = oldTab.length;
            //扩容为原数组的两倍
            int newLen = oldLen * 2;
            Entry[] newTab = new Entry[newLen];
            int count = 0;

            for (Entry e : oldTab) {
                if (e != null) {
                    ThreadLocal<?> k = e.get();
                    if (k == null) {
                        e.value = null; // Help the GC
                    } else {
                        int h = k.threadLocalHashCode & (newLen - 1);
                        while (newTab[h] != null)
                            h = nextIndex(h, newLen);
                        newTab[h] = e;
                        count++;
                    }
                }
            }

            setThreshold(newLen);
            size = count;
            table = newTab;
        }

        3.4.4 初始Entry[]数组为16 . 扩容阈值为容量的2/3. 扩容的倍数为2。如果当前数组为16,那么扩容后为32

                  

/**
 * The initial capacity -- MUST be a power of two.
 */
private static final int INITIAL_CAPACITY = 16;
/**
 * Set the resize threshold to maintain at worst a 2/3 load factor.
 */
private void setThreshold(int len) {
    threshold = len * 2 / 3;
}

4. 以上为我的思考,有机会再补几张图。个人水平有限,上述如有错误欢迎指正修改!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值