PTA2018乙级1091N-自守数

 

1091 N-自守数 (15 分)

如果某个数 K 的平方乘以 N 以后,结果的末尾几位数等于 K,那么就称这个数为“N-自守数”。例如 3×92​2​​=25392,而 25392 的末尾两位正好是 92,所以 92 是一个 3-自守数。

本题就请你编写程序判断一个给定的数字是否关于某个 N 是 N-自守数。

输入格式:

输入在第一行中给出正整数 M(≤20),随后一行给出 M 个待检测的、不超过 1000 的正整数。

输出格式:

对每个需要检测的数字,如果它是 N-自守数就在一行中输出最小的 N 和 NK​2​​ 的值,以一个空格隔开;否则输出 No。注意题目保证 N<10。

输入样例:

3
92 5 233

输出样例:

3 25392
1 25
No

解题思路见代码及注释

#include <stdio.h>
#include <stdlib.h>

int main()
{
    int quantity,n,k,result,tr,tk,i;
    scanf("%d",&quantity);
    while(quantity-->0)
    {
        scanf("%d",&k);
        for( i=1; i<=10; i++)
        {
            int flag = 1;  //由flag做循环控制,若已经匹配则break
            result=i*k*k;
            tr=result;
            tk=k;
            while(tk>0)    //mod10比较
            {
                if(tk%10!=tr%10)
                {
                    flag=0;
                    break; //不相等直接break
                }
                tk=tk/10;
                tr=tr/10;
            }
            if(flag==1){   //flag==1说明result最后几位与k相等
              printf("%d %d\n",i,result);
              break;
            }
        }                  //若i>10,说明10以内无满足条件的数
        if(i>10)printf("No\n");

    }
    return 0;
}

 

### 解决方案 对于PTA天梯赛训练集中的L1-009 N个求和问题,在C++中可以通过定义结构体来存储分并编写函处理加法运算以及化简操作。下面展示了一个完整的解决办法。 #### 定义据结构与辅助功能 为了方便表示分,可以创建一个名为`Fraction`的结构体用于保存分子(`numerator`)和分母(`denominator`)两个成员变量;同时提供构造函初始化对象,并重载流插入运算符以便于输出显示[^1]。 ```cpp #include <iostream> using namespace std; struct Fraction { int numerator; int denominator; // 构造函 Fraction() : numerator(0), denominator(1) {} Fraction(int num, int deno): numerator(num), denominator(deno){ simplify(); } void simplify(){ if (this->denominator != 0 && this->numerator != 0){ int gcd_val = __gcd(abs(this->numerator), abs(this->denominator)); this->numerator /= gcd_val; this->denominator /= gcd_val; if (this->denominator < 0){ // Ensure the sign is on top this->numerator *= -1; this->denominator *= -1; } }else{ this->numerator = 0; this->denominator = 1; } } friend ostream& operator<<(ostream &os, const Fraction &f); }; // Overload << to output fraction objects easily. ostream& operator<<(ostream &os, const Fraction &f){ os<< f.numerator << "/" << f.denominator; return os; } ``` #### 主逻辑实现 接下来是主程序部分,这里读取输入直到遇到文件结束标志EOF为止。每次迭代都会先获取当前测试案例的量n,之后循环读入每一个分字符串形式的据转换为对应的`Fraction`实例加入到向量容器之中准备后续计算。最后遍历所有项累加得到最终结果后打印出来即可完成整个流程[^2]。 ```cpp int main() { vector<Fraction> fractions; while(true){ string line; getline(cin,line); if(line.empty()) break; stringstream ss(line); size_t count; ss >> count; for(size_t i=0 ;i<count;++i){ char slash; int numer, denom; ss>>numer>>slash>>denom; fractions.emplace_back(numer,denom); } // Calculate LCM of all denominators first long long lcm = 1LL *fractions.front().denominator; for(auto it=fractions.begin()+1;it!=fractions.end();++it){ lcm=(lcm*(*it).denominator)/__gcd(lcm , (*it).denominator ); } // Sum up all numerators after converting them into same base using calculated LCM long long total_numerator=0; for(const auto& frac:fractions){ total_numerator+=frac.numerator*(lcm/frac.denominator); } cout<<Fraction(total_numerator,lcm)<<endl; // Clear input buffer and prepare for next test case cin.clear(); cin.ignore(INT_MAX,'\n'); fractions.clear(); } return 0; } ``` 此段代码实现了对多个带符号有理相加以获得其简化后的表达式的功能。通过构建合理的类封装了必要的属性和行为使得整体架构清晰易懂易于维护扩展[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值