spark dataframe/dataset解析json字符串的字段

该博客详细介绍了如何在Spark中利用DataFrame和Dataset操作,通过get_json_object函数逐层解析JSON字符串中的各个对象,从而高效处理JSON数据。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.使用函数get_json_object逐个取出json当层对象

object testdf {
  def main(args: Array[String]): Unit = {
    Logger.getLogger("org.apache.spark").setLevel(Level.ERROR)
    val spark = SparkSession.builder().master("local[*]").appName("test app").getOrCreate()
    import spark.implicits._
    val ds = spark.createDataset(Seq("""{"name":"hrr","age":12,"subject":[{"name":"math","level":1}]}"""))
    ds.show(false)
    
    ds打印为:
+-------------------------------------------------------------+
|value                                                        |
+-------------------------------------------------------------+
|{"name":"hrr","age":12,"subject":[{"name":"math","level":1}]}|
+-------------------------------------------------------------+

    ds.createOrReplaceTempView("t1")
    val ds_format = spark.sql(
      """
        |select name, age,get_json_object(subject,'$.name') as subject_name,get_json_object(subject,'$.level') as subject_level from
        |(select get_json_object(value,'$.name') as name,
        |get_json_object(value,'$.age') as age,
        |get_json_object(value,'$.subject[0]') as subject
        |from t1) t2
      """.stripMargin).toDF("name","age","subject_name","subject_level")
    ds_format.filter("age > 11").show(false)
    
ds_format打印为:
+----+---+------------+-------------+
|name|age|subject_name|subject_level|
+----+---+------------+-------------+
|hrr |12 |math        |1            |
+----+---+------------+-------------+


    spark.stop()
  }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值