该原理参考Fundamental Principles of optical Lithography
数学基础——旋度、散度、梯度
旋度
对于一个向量场F,其旋度表示为:
∇
×
F
(
c
u
r
l
F
)
=
(
∂
F
z
∂
y
−
∂
F
y
∂
z
)
x
ˆ
+
(
∂
F
x
∂
z
−
∂
F
z
∂
x
)
y
ˆ
+
(
∂
F
y
∂
x
−
∂
F
x
∂
y
)
z
ˆ
\nabla\times \boldsymbol{F}(curl \boldsymbol{F})=(\frac{\partial F_z}{\partial y}-\frac{\partial F_y}{\partial z})\text{\^{x}}+(\frac{\partial F_x}{\partial z}-\frac{\partial F_z}{\partial x})\text{\^{y}}+(\frac{\partial F_y}{\partial x}-\frac{\partial F_x}{\partial y})\text{\^{z}}
∇×F(curlF)=(∂y∂Fz−∂z∂Fy)xˆ+(∂z∂Fx−∂x∂Fz)yˆ+(∂x∂Fy−∂y∂Fx)zˆ
散度
同时对于一个向量场F,其散度表示为:
∇
⋅
F
(
d
i
v
F
)
=
∂
F
x
∂
x
+
∂
F
y
∂
y
+
∂
F
z
∂
z
\nabla\cdot \boldsymbol{F}(div \boldsymbol{F})=\frac{\partial F_x}{\partial x}+\frac{\partial F_y}{\partial y}+\frac{\partial F_z}{\partial z}
∇⋅F(divF)=∂x∂Fx+∂y∂Fy+∂z∂Fz
散度是线性的,即对于标量a,b和向量U,V有:
∇
⋅
(
a
U
+
b
V
)
=
a
∇
⋅
U
+
b
∇
⋅
V
\nabla\cdot (a\boldsymbol{U}+b\boldsymbol{V})=a\nabla\cdot \boldsymbol{U}+b\nabla\cdot \boldsymbol{V}
∇⋅(aU+bV)=a∇⋅U+b∇⋅V
梯度
对于一个标量场g,有 ∇ g = ∂ g ∂ x x ˆ + ∂ g ∂ y y ˆ + ∂ g ∂ z z ˆ \nabla\mathcal{g} = \frac{\partial \mathcal{g}}{\partial x}\text{\^x}+\frac{\partial \mathcal{g}}{\partial y}\text{\^y}+\frac{\partial \mathcal{g}}{\partial z}\text{\^z} ∇g=∂x∂gxˆ+∂y∂gyˆ+∂z∂gzˆ
拉普拉斯算符
拉普拉斯算符等于对一个量先进行梯度运算再进行散度运算,即,
对于一个标量场g,有:
∇
2
g
=
∇
⋅
(
∇
g
)
=
∂
2
g
∂
x
2
+
∂
2
g
∂
y
2
+
∂
2
g
∂
z
2
\nabla^2 g=\nabla\cdot (\nabla g)=\frac{\partial^2 g}{\partial x^2}+\frac{\partial^2 g}{\partial y^2}+\frac{\partial^2 g}{\partial z^2}
∇2g=∇⋅(∇g)=∂x2∂2g+∂y2∂2g+∂z2∂2g
而对于向量场F,有:
∇
2
F
=
∇
2
F
x
x
ˆ
+
∇
2
F
y
y
ˆ
+
∇
2
F
z
z
ˆ
\nabla^2 \boldsymbol{F}=\nabla^2 F_x\text{\^x}+\nabla^2 F_y\text{\^y}+\nabla^2 F_z\text{\^z}
∇2F=∇2Fxxˆ+∇2Fyyˆ+∇2Fzzˆ
相关运算
对于任意的标量场g和向量场F有下面等式成立: ∇ ⋅ ∇ × F = 0 \nabla\cdot\nabla\times\boldsymbol{F}=0 ∇⋅∇×F=0 ∇ × ∇ g = 0 \nabla\times\nabla g=0 ∇×∇g=0 ∇ 2 F = ∇ ( ∇ ⋅ F ) − ∇ × ( ∇ × F ) \nabla^2\boldsymbol{F}=\nabla(\nabla\cdot\boldsymbol{F})-\nabla\times(\nabla\times\boldsymbol{F}) ∇2F=∇(∇⋅F)−∇×(∇×F) ∇ ⋅ ( g F ) = g ∇ ⋅ F − ∇ g ⋅ F \nabla\cdot(g\boldsymbol{F})=g\nabla\cdot\boldsymbol{F}-\nabla g\cdot\boldsymbol{F} ∇⋅(gF)=g∇⋅F−∇g⋅F ∇ × ( g F ) = g ∇ × F − ∇ g × F \nabla\times(g\boldsymbol{F})=g\nabla\times\boldsymbol{F}-\nabla g\times\boldsymbol{F} ∇×(gF)=g∇×F−∇g×F
球坐标系下的旋度、散度、梯度
球坐标下的向量被表示为 ( r , θ , ϕ ) (r,\theta,\phi) (r,θ,ϕ),r为向量的长度, θ \theta θ是向量与Z轴的夹角, ϕ \phi ϕ是向量与x-z平面的夹角,球坐标与笛卡尔坐标的转换为 r = x 2 + y 2 + z 2 r=\sqrt{x^2+y^2+z^2} r=x2+y2+z2 θ = c o s − 1 ( z r ) \theta=cos^{-1}(\frac{z}{r}) θ=cos−1(rz) ϕ = t a n − 1 ( y x ) \phi=tan^{-1}(\frac{y}{x}) ϕ=tan−1(xy)或者 x = r s i n θ c o s ϕ x=rsin\theta cos\phi x=rsinθcosϕ y = r s i n θ s i n ϕ y=rsin\theta sin\phi y=rsinθsinϕ z = r c o s θ z=rcos\theta z=rcosθ
旋度
对于向量场F有 ∇ × F = 1 r s i n θ ( ∂ ∂ θ ( F θ s i n θ ) − ∂ F ϕ ∂ θ ) r ˆ + ( 1 r s i n θ ∂ F r ∂ ϕ − 1 r ∂ ∂ r ( r F ϕ ) ) θ ˆ + 1 r ( ∂ ∂ r ( r F θ ) − ∂ F r ∂ θ ) ϕ ˆ \nabla\times\boldsymbol{F}=\frac{1}{rsin\theta}(\frac{\partial}{\partial\theta }(F_\theta sin\theta)-\frac{\partial F_\phi}{\partial\theta})\text{\^r}+(\frac{1}{rsin\theta}\frac{\partial F_r}{\partial\phi}-\frac{1}{r}\frac{\partial }{\partial r}(rF_\phi))\text{\^{θ}}+\frac{1}{r}(\frac{\partial}{\partial r}(rF_\theta )-\frac{\partial F_r}{\partial\theta})\text{\^{ϕ}} ∇×F=rsinθ1(∂θ∂(Fθsinθ)−∂θ∂Fϕ)rˆ+(rsinθ1∂ϕ∂Fr−r1∂r∂(rFϕ))θˆ+r1(∂r∂(rFθ)−∂θ∂Fr)ϕˆ
散度
对于向量场F有: ∇ ⋅ F = 1 r 2 ∂ ∂ r ( r 2 F r ) + 1 r s i n θ ∂ ∂ θ ( F θ s i n θ ) + 1 r s i n θ ∂ F ϕ ∂ ϕ \nabla\cdot\boldsymbol{F}=\frac{1}{r^2}\frac{\partial}{\partial r}(r^2F_r)+\frac{1}{rsin\theta}\frac{\partial}{\partial\theta}(F_\theta sin\theta)+\frac{1}{rsin\theta}\frac{\partial F_\phi}{\partial\phi} ∇⋅F=r21∂r∂(r2Fr)+rsinθ1∂θ∂(Fθsinθ)+rsinθ1∂ϕ∂Fϕ
梯度
对于一个标量g有 ∇ g = ∂ g ∂ r r ˆ + 1 r ∂ g ∂ θ θ ˆ + 1 r s i n θ ∂ g ∂ ϕ ϕ ˆ \nabla g=\frac{\partial g}{\partial r}\text{\^r}+\frac{1}{r}\frac{\partial g}{\partial\theta}\text{\^{θ}}+\frac{1}{rsin\theta}\frac{\partial g}{\partial\phi}\text{\^{ϕ}} ∇g=∂r∂grˆ+r1∂θ∂gθˆ+rsinθ1∂ϕ∂gϕˆ
拉普拉斯算符
对于一个标量g有 ∇ 2 g = 1 r 2 ∂ ∂ r ( r 2 ∂ g ∂ r ) + 1 r 2 s i n θ ∂ ∂ θ ( s i n θ ∂ g ∂ θ ) + 1 r 2 s i n 2 θ ∂ 2 g ∂ ϕ 2 \nabla^2g=\frac{1}{r^2}\frac{\partial}{\partial r}(r^2\frac{\partial g}{\partial r})+\frac{1}{r^2sin\theta}\frac{\partial}{\partial\theta}(sin\theta\frac{\partial g}{\partial\theta})+\frac{1}{r^2sin^2\theta}\frac{\partial^2 g}{\partial\phi^2} ∇2g=r21∂r∂(r2∂r∂g)+r2sinθ1∂θ∂(sinθ∂θ∂g)+r2sin2θ1∂ϕ2∂2g
麦克斯韦方程和波动方程
麦克斯韦方程组一般用于电磁波的表示:
∇
×
H
−
∂
D
∂
t
=
J
\nabla\times \boldsymbol{H}-\frac{\partial \boldsymbol{D}}{\partial t} = \boldsymbol{J}
∇×H−∂t∂D=J
∇
×
E
+
∂
B
∂
t
=
0
\nabla\times \boldsymbol{E}+\frac{\partial \boldsymbol{B}}{\partial t} = 0
∇×E+∂t∂B=0
∇
⋅
D
=
ρ
\nabla\cdot \boldsymbol{D}= \rho
∇⋅D=ρ
∇
⋅
B
=
0
\nabla\cdot \boldsymbol{B}= 0
∇⋅B=0其中E为电场,H为磁场,都是向量场。而D为电位移矢量,B为磁感应强度,J为电流密度矢量,ρ为标量电荷密度。
物质方程为:
J
=
σ
E
\boldsymbol{J}=\sigma \boldsymbol{E}
J=σE
D
=
ε
E
\boldsymbol{D}=\varepsilon\boldsymbol{E}
D=εE
B
=
μ
H
\boldsymbol{B}=\mu\boldsymbol{H}
B=μH其中σ为材料的导电率,ε为介电常数,μ为磁导率,对于各向异性的材料,这三个量通常是张量。而对于均匀的材料,其导电率,介电常数,磁导率与位置无关。所以可以将物质方程带入麦克斯韦方程,重写麦克斯韦方程为:
∇
×
H
−
ε
∂
E
∂
t
=
σ
E
\nabla\times\boldsymbol{H}-\varepsilon\frac{\partial \boldsymbol{E}}{\partial t}=\sigma\boldsymbol{E}
∇×H−ε∂t∂E=σE
∇
×
E
+
μ
∂
H
∂
t
=
0
\nabla\times\boldsymbol{E}+\mu\frac{\partial \boldsymbol{H}}{\partial t}=0
∇×E+μ∂t∂H=0
同时有
∇
⋅
ε
E
=
ρ
\nabla\cdot\varepsilon\boldsymbol{E}=\rho
∇⋅εE=ρ对于透光的材料来说,一般可以认为其电荷密度ρ=0时,这时有
∇
⋅
E
=
0
\nabla\cdot\boldsymbol{E}=0
∇⋅E=0所以有:
∇
2
E
=
∇
(
∇
⋅
E
)
−
∇
×
(
∇
×
E
)
=
−
∇
×
(
∇
×
E
)
\nabla^2\boldsymbol{E}=\nabla(\nabla\cdot\boldsymbol{E})-\nabla\times(\nabla\times\boldsymbol{E})=-\nabla\times(\nabla\times\boldsymbol{E})
∇2E=∇(∇⋅E)−∇×(∇×E)=−∇×(∇×E)对重写的麦克斯韦方程两边同时求旋度,有:
∇
2
E
=
ε
μ
∂
2
E
∂
t
2
+
μ
σ
∂
E
∂
t
(公式1)
\tag{公式1}\nabla^2\boldsymbol{E}=\varepsilon\mu\frac{\partial^2 \boldsymbol{E}}{\partial t^2}+\mu\sigma\frac{\partial \boldsymbol{E}}{\partial t}
∇2E=εμ∂t2∂2E+μσ∂t∂E(公式1)
∇
2
H
=
ε
μ
∂
2
H
∂
t
2
+
μ
σ
∂
H
∂
t
\nabla^2\boldsymbol{H}=\varepsilon\mu\frac{\partial^2 \boldsymbol{H}}{\partial t^2}+\mu\sigma\frac{\partial \boldsymbol{H}}{\partial t}
∇2H=εμ∂t2∂2H+μσ∂t∂H同时对于非吸收介质有σ=0,所以有:
∇
2
E
=
1
ν
2
∂
2
E
∂
t
2
\nabla^2\boldsymbol{E}=\frac{1}{\nu^2}\frac{\partial^2 \boldsymbol{E}}{\partial t^2}
∇2E=ν21∂t2∂2E
∇
2
H
=
1
ν
2
∂
2
H
∂
t
2
\nabla^2\boldsymbol{H}=\frac{1}{\nu^2}\frac{\partial^2 \boldsymbol{H}}{\partial t^2}
∇2H=ν21∂t2∂2H其中ν为光速,表示为:
ν
=
1
ε
μ
\nu=\frac{1}{\sqrt{\varepsilon\mu}}
ν=εμ1μ0为真空中的磁导率,ε0为真空中的介电常数,真空中的光速为:
c
=
1
ε
0
μ
0
c=\frac{1}{\sqrt{\varepsilon_0\mu_0}}
c=ε0μ01材料的折射率被定义为
n
=
c
ν
=
ε
μ
ε
0
μ
0
n=\frac{c}{\nu}=\sqrt{\frac{\varepsilon\mu}{\varepsilon_0\mu_0}}
n=νc=ε0μ0εμ同时定义相对磁导率
μ
r
\mu_r
μr和相对介电常数
ε
r
\varepsilon_r
εr为:
μ
r
=
μ
μ
0
\mu_r=\frac{\mu}{\mu_0}
μr=μ0μ
ε
r
=
ε
ε
0
\varepsilon_r=\frac{\varepsilon}{\varepsilon_0}
εr=ε0ε所以折射率也可以写作
n
=
μ
r
ε
r
n=\sqrt{\mu_r\varepsilon_r}
n=μrεr。
亥姆霍兹方程
我们一般用电场 E \boldsymbol{E} E来描述光,对于一束单色光的电场 E \boldsymbol{E} E在任意时刻t和任意位置 P \boldsymbol{P} P处被表示为 E ( P , t ) = A ( P ) c o s ( w t + Φ ( P ) ) = R e ( U ( P ) e − i w t ) (公式2) \tag{公式2} \boldsymbol{E}( \boldsymbol{P},t)=A(\boldsymbol{P})cos(wt+\Phi(\boldsymbol{P}))=Re(\boldsymbol{U}(\boldsymbol{P})e^{-iwt}) E(P,t)=A(P)cos(wt+Φ(P))=Re(U(P)e−iwt)(公式2)其中 U ( P ) = A ( P ) e − i ϕ ( P ) \boldsymbol{U}(\boldsymbol{P})=A(\boldsymbol{P})e^{-i\phi(\boldsymbol{P})} U(P)=A(P)e−iϕ(P)这里的 U ( P ) \boldsymbol{U}(\boldsymbol{P}) U(P)叫做相量,注意到其是一个与时间无关的量。如果假定光在传播的过程中,它的频率不发生变化,那么光的传播、干涉与其他物体相互作用可以认为与时间无关。为了将电场 E \boldsymbol{E} E中的时间变量分离出来,我们将公式2带入公式1中,则有: ∇ 2 E = ε μ ∂ 2 E ∂ t 2 + μ σ ∂ E ∂ t = − w 2 ε μ E − i w μ σ E (公式3) \tag{公式3} \nabla^2\boldsymbol{E}=\varepsilon\mu\frac{\partial^2 \boldsymbol{E}}{\partial t^2}+\mu\sigma\frac{\partial \boldsymbol{E}}{\partial t}=-w^2\varepsilon\mu\boldsymbol{E}-iw\mu\sigma\boldsymbol{E} ∇2E=εμ∂t2∂2E+μσ∂t∂E=−w2εμE−iwμσE(公式3)在公式3中等式左右两边都要一个 e − i w t e^{-iwt} e−iwt,同时除以它,得到一个与时间无关的方程 ∇ 2 U = − w 2 ε μ U − i w μ σ U (公式4) \tag{公式4} \nabla^2\boldsymbol{U}=-w^2\varepsilon\mu\boldsymbol{U}-iw\mu\sigma\boldsymbol{U} ∇2U=−w2εμU−iwμσU(公式4)将公式4改写一下,得到亥姆霍兹方程(Helmholtz equation) ∇ 2 U + k 2 U ( P ) = 0 (公式5) \tag{公式5} \nabla^2\boldsymbol{U}+k^2\boldsymbol{U}(\boldsymbol{P})=0 ∇2U+k2U(P)=0(公式5)其中k叫做传播常数或波数 k 2 = w 2 ε μ + i w μ σ k^2=w^2\varepsilon\mu+iw\mu\sigma k2=w2εμ+iwμσ如果材料的电导率 σ = 0 \sigma=0 σ=0,则 k = w ε μ = 2 π n / λ k=w\sqrt{\varepsilon\mu}=2\pi n/\lambda k=wεμ=2πn/λ其中 λ \lambda λ为光的波长。对于导电率不为0的材料的折射率是一个复折射率,定义为: n 2 = c v = k 2 λ 2 4 π 2 = μ c 2 ( ε + i σ w ) \boldsymbol{n^2}=\frac{c}{v}=\frac{k^2\lambda^2}{4\pi^2}=\mu c^2(\varepsilon+i\frac{\sigma}{w}) n2=vc=4π2k2λ2=μc2(ε+iwσ)即 n = n + i κ \boldsymbol{n}=n+i\kappa n=n+iκ其中 n 2 = 1 2 μ c 2 ε ( 1 + ( σ ε w ) 2 ) + 1 n^2=\frac{1}{2}\mu c^2\varepsilon(\sqrt{1+(\frac{\sigma}{\varepsilon w})^2})+1 n2=21μc2ε(1+(εwσ)2)+1 κ 2 = 1 2 μ c 2 ε ( 1 + ( σ ε w ) 2 ) − 1 \kappa^2=\frac{1}{2}\mu c^2\varepsilon(\sqrt{1+(\frac{\sigma}{\varepsilon w})^2})-1 κ2=21μc2ε(1+(εwσ)2)−1当导电率 σ = 0 \sigma=0 σ=0时有, κ = 0 \kappa=0 κ=0和 n = n \boldsymbol{n}=n n=n。对于弱吸收材料,即 σ / ε w ≪ 1 \sigma/\varepsilon w\ll1 σ/εw≪1,则上式可以近似的写做: n ≈ c μ ε = μ r ε r n\approx c\sqrt{\mu\varepsilon}=\sqrt{\mu_r\varepsilon_r} n≈cμε=μrεr κ ≈ c σ 2 w μ ε = λ σ 4 π μ ε \kappa\approx \frac{c\sigma}{2w}\sqrt{\frac{\mu}{\varepsilon}}=\frac{\lambda\sigma}{4\pi}\sqrt{\frac{\mu}{\varepsilon}} κ≈2wcσεμ=4πλσεμ