1 数据集统计信息
2 实验记录
| 序号 | 训练数据集 | 验证数据集 | 模型名称 | 模型结构 | 最大句子长度 | batch_size | 学习率 | 最佳表现(验证集,测试集) | 备注 |
| 1 | train.txt | valid.txt | v1 | pa_lstm_crf | 100 | 10 | 1e-5 | (0.3989 ,0.3790,0.3887)、0.139(不准确,模型保存废了) | 优化后,已重跑gpu14 |
| 2 | train.txt | valid.txt | v2 | bert_crf | 100 | 10 | 1e-5 | 0.4215、0.4271 | 723个epoch
测试集: label_level: {'unknown': {'F1': 0.3971, 'P': 0.497, 'R': 0.3307}, '拥有': {'F1': 0.3908, 'P': 0.5397, 'R': 0.3063}, '竞争': {'F1': 0.3523, 'P': 0.3953, 'R': 0.3178}, '成立': {'F1': 0.439, 'P': 0.375, 'R': 0.5294}, '持股': {'F1': 0.4386, 'P': 0.5051, 'R': 0.3876}, ' 自己': {'F1': 0.6128, 'P': 0.6791, 'R': 0.5583}, '分析': {'F1': 0.547, 'P': 0.64, 'R': 0.4776}, '入股': {'F1': 0.5334, 'P': 0.7273, 'R': 0.4211}, '合作': {'F1': 0.3839, 'P': 0.4479, 'R': 0.3359}, '收购': {'F1': 0.5275, 'P': 0.5714, 'R': 0.4898}, '减持': {'F1': 0.5393, 'P': 0.6316, 'R': 0.4706}, '拟收购': {'F1': 0.125, 'P': 0.1538, 'R': 0.1053}, '签约': {'F1': 0.6526, 'P': 0.7561, 'R': 0.5741}, ' 交易': {'F1': 0.3256, 'P': 0.5385, 'R': 0.2333}, '买资': {'F1': 0.1291, 'P': 0.1667, 'R': 0.1053}, '增持': {'F1': 0.338, 'P': 0.5455, 'R': 0.2449}, '发行': {'F1': 0.5, 'P': 0.5556, 'R': 0.4545}, '重组': {'F1': 0.5085, 'P': 0.75, 'R': 0.3846}, '合并': {'F1': 0.45, 'P': 0.45, 'R': 0.45}, '注资': {'F1': 0.2927, 'P': 0.4, 'R': 0.2308}, '欠款': {'F1': 0.3077, 'P': 1.0, 'R': 0.1818}, '转让': {'F1': 0.0, 'P': 0.0, 'R': 0.0}, '帮助': {'F1': 0.1765, 'P': 0.375, 'R': 0.1154}, '订单': {'F1': 0.25, 'P': 0.3846, 'R': 0.1852}, '商讨': {'F1': 0.1667, 'P': 0.2, 'R': 0.1429}, '纠纷': {'F1': 0.4118, 'P': 0.4118, 'R': 0.4118}, '合资': {'F1': 0.25, 'P': 0.4, 'R': 0.1818}, '借 壳': {'F1': 0.4, 'P': 0.6667, 'R': 0.2857}} |
| 3 | lan | 已杀死(标签嵌入维度过大,见序号5) | |||||||
| 4 | bert_lan_crf | 0.4032 | gpu14 重新启动,维度为28 | ||||||
| 5 | lan | 0.3627 | 1921个epoch,时间过长,已被杀死,对标序号3 。维度28(不准确,模型保存废了) |
命令行:
序号:1 gpu14
CUDA_VISIBLE_DEVICES=0 nohup python -u re_extract.py -tr ../data/re/FinRE/train.txt -de ../data/re/FinRE/valid.txt -mfp ../data/re/FinRE/v1 -mn v1 -lhs 200 -bs 10 -mp /gpfs/share/home/1801220008/python37/trans_ext_ner_and_re/data/pretrained_model/chinese_L-12_H-768_A-12 -lr 1e-5 -sml 100 -e 20000 > ../data/re/FinRE/v1/v1.log 2>&0 1 &
预测:
CUDA_VISIBLE_DEVICES=0 python -u re_extract.py -te ../data/re/FinRE/test.txt -mfp ../data/re/FinRE/v1 -mn v1
序号:2 gpu10
CUDA_VISIBLE_DEVICES=1 nohup python -u train_model.py -tr ../trans_data/re/FinRE/train.txt -de ../trans_data/re/FinRE/valid.txt -tt re -ep ../trans_data/re/FinRE/v1/v1.embedding.pk -sml 100 -bs 12 -me 20000 -uc True -sp ../trans_data/re/FinRE/v1 -mn v1 -ws True -pg 1 > ../trans_data/re/FinRE/v1/v1.log 2>&1 &
预测:
python test_main_model.py -te=../trans_data/re/FinRE/test.txt -tt=re -bs 10 -uc True -sml=100 -mn=v1 -rf=../trans_data/re/FinRE/v1/test_result -ep=../trans_data/re/FinRE/v1/v1.embedding.pk
序号:3 gpu10
nohup python -u train_model.py -tr ../trans_data/re/FinRE/train.txt -de ../trans_data/re/FinRE/valid.txt -tt re -d lan -l lan_loss -ep ../trans_data/re/FinRE/v2/v2.embedding.pk -sml 100 -bs 12 -me 20000 -uc True -sp ../trans_data/re/FinRE/v2 -mn v2 -ws True -pg 1 > ../trans_data/re/FinRE/v2/v2.log 2>&1 &
序号:4 gpu10
CUDA_VISIBLE_DEVICES=2 nohup python -u train_model.py -tr ../trans_data/re/FinRE/train.txt -de ../trans_data/re/FinRE/valid.txt -tt re -d lan -ep ../trans_data/re/FinRE/v3/v3.embedding.pk -sml 100 -bs 10 -me 20000 -uc True -sp ../trans_data/re/FinRE/v3 -mn v3 -ws True -pg 1 > ../trans_data/re/FinRE/v3/v3.log 2>&1 &
预测:
CUDA_VISIBLE_DEVICES=2 python test_main_model.py -te=../trans_data/re/FinRE/test.txt -tt=re -d lan -sml 100 -bs 10 -uc True -sml=100 -mn=v3 -rf=../trans_data/re/FinRE/v3/test_result -ep=../trans_data/re/FinRE/v3/v3.embedding.pk
序号:5 gpu10 标签注意力的维度为标签个数。
nohup python -u train_model.py -tr ../trans_data/re/FinRE/train.txt -de ../trans_data/re/FinRE/valid.txt -tt re -d lan -l lan_loss -ep ../trans_data/re/FinRE/v4/v4.embedding.pk -sml 100 -bs 12 -me 20000 -uc True -sp ../trans_data/re/FinRE/v4 -mn v4 -ws True -pg 1 > ../trans_data/re/FinRE/v4/v4.log 2>&1 &
预测:
python test_main_model.py -te=../trans_data/re/FinRE/test.txt -tt=re -d lan -sml 100 -bs 10 -uc True -sml=100 -mn=v4 -rf=../trans_data/re/FinRE/v4/test_result -ep=../trans_data/re/FinRE/v4/v4.embedding.pk
1.3 预测代码
python test_main_model.py -te=../trans_data/ner/out_domain/MSRA_cluener_peo_3000_dev_select_20_to_test.txt -tt=ner -e=bert -sml=330 -mn=v1 -rf=../trans_data/ner/out_domain/MSRA_cluener_peo_3000_dev_select_20_to_test_result -ep=../trans_data/ner/out_domain/v1.pk -sc=False
python test_main_model.py -te=../trans_data/ner/out_domain/MSRA_cluener_peo_3000_dev.txt -tt=ner -e=bert -sml=330 -mn=v1 -rf=../trans_data/ner/out_domain/MSRA_cluener_peo_3000_dev_result -ep=../trans_data/ner/out_domain/v1.pk -sc=True
2.2 h超参数对模型性能的影响实验:lan 修改num_logits_output参数,,,(模型保存废了)
| 模型名称 | h超参设置 | 最大句子长度 | batch_size | 学习率 | 验证集 | 备注 |
| v1 | 2 | 100 | 10 | 1e-5 | 0 | nohup python -u train_model.py -tr ../trans_data/re/FinRE/train.txt -de ../trans_data/re/FinRE/valid.txt -tt re -d lan -l lan_loss -ep ../trans_data/re/FinRE/lan/2/v2.embedding.pk -sml 100 -bs 10 -me 20000 -uc True -sp ../trans_data/re/FinRE/lan/2 -mn v2 -ws True -pg 1 > ../trans_data/re/FinRE/lan/2/2.log 2>&1 & 已杀死、过拟合 |
| v2 | 3 | 100 | 10 | 1e-5 | 0 | nohup python -u train_model.py -tr ../trans_data/re/FinRE/train.txt -de ../trans_data/re/FinRE/valid.txt -tt re -d lan -l lan_loss -ep ../trans_data/re/FinRE/lan/3/v3.embedding.pk -sml 100 -bs 10 -me 20000 -uc True -sp ../trans_data/re/FinRE/lan/3 -mn v3 -ws True -pg 1 > ../trans_data/re/FinRE/lan/3/3.log 2>&1 & 已杀死、过拟合 |
| v4 | 4 | 0.039 | CUDA_VISIBLE_DEVICES=1 nohup python -u train_model.py -tr ../trans_data/re/FinRE/train.txt -de ../trans_data/re/FinRE/valid.txt -tt re -d lan -l lan_loss -ep ../trans_data/re/FinRE/lan/4/v4.embedding.pk -sml 100 -bs 10 -me 20000 -uc True -sp ../trans_data/re/FinRE/lan/4 -mn v4 -ws True -pg 1 > ../trans_data/re/FinRE/lan/4/4.log 2>&1 & 已杀死、过拟合 | |||
| v5 | 5 | 0.0043 | nohup python -u train_model.py -tr ../trans_data/re/FinRE/train.txt -de ../trans_data/re/FinRE/valid.txt -tt re -d lan -l lan_loss -ep ../trans_data/re/FinRE/lan/5/v5.embedding.pk -sml 100 -bs 10 -me 20000 -uc True -sp ../trans_data/re/FinRE/lan/5 -mn v5 -ws True -pg 1 > ../trans_data/re/FinRE/lan/5/5.log 2>&1 & 已启动 | |||
| v7 | 7 | nohup python -u train_model.py -tr ../trans_data/re/FinRE/train.txt -de ../trans_data/re/FinRE/valid.txt -tt re -d lan -l lan_loss -ep ../trans_data/re/FinRE/lan/7/v7.embedding.pk -sml 100 -bs 10 -me 20000 -uc True -sp ../trans_data/re/FinRE/lan/7 -mn v7 -ws True -pg 1 > ../trans_data/re/FinRE/lan/7/7.log 2>&1 & gpu01已启动 | ||||
| v13 | 13 | nohup python -u train_model.py -tr ../trans_data/re/FinRE/train.txt -de ../trans_data/re/FinRE/valid.txt -tt re -d lan -l lan_loss -ep ../trans_data/re/FinRE/lan/13/v13.embedding.pk -sml 100 -bs 10 -me 20000 -uc True -sp ../trans_data/re/FinRE/lan/13 -mn v13 -ws True -pg 1 > ../trans_data/re/FinRE/lan/13/13.log 2>&1 & gpu01已启动 | ||||
| v14 | 14 | nohup python -u train_model.py -tr ../trans_data/re/FinRE/train.txt -de ../trans_data/re/FinRE/valid.txt -tt re -d lan -l lan_loss -ep ../trans_data/re/FinRE/lan/14/v14.embedding.pk -sml 100 -bs 10 -me 20000 -uc True -sp ../trans_data/re/FinRE/lan/14 -mn v14 -ws True -pg 1 > ../trans_data/re/FinRE/lan/14/14.log 2>&1 & gpu01已启动 | ||||
| v28 | 28 | 0.3375 | nohup python -u train_model.py -tr ../trans_data/re/FinRE/train.txt -de ../trans_data/re/FinRE/valid.txt -tt re -d lan -l lan_loss -ep ../trans_data/re/FinRE/lan/28/v28.embedding.pk -sml 100 -bs 10 -me 20000 -uc True -sp ../trans_data/re/FinRE/lan/28 -mn v28 -ws True -pg 1 > ../trans_data/re/FinRE/lan/28/28.log 2>&1 & 已启动 | |||
| v128 | 128 | 0.247 | nohup python -u train_model.py -tr ../trans_data/re/FinRE/train.txt -de ../trans_data/re/FinRE/valid.txt -tt re -d lan -l lan_loss -ep ../trans_data/re/FinRE/lan/128/v128.embedding.pk -sml 100 -bs 10 -me 20000 -uc True -sp ../trans_data/re/FinRE/lan/128 -mn v128 -ws True -pg 1 > ../trans_data/re/FinRE/lan/128/128.log 2>&1 & 已启动 | |||
| v448 | 448 | 0.1837 | nohup python -u train_model.py -tr ../trans_data/re/FinRE/train.txt -de ../trans_data/re/FinRE/valid.txt -tt re -d lan -l lan_loss -ep ../trans_data/re/FinRE/lan/448/v448.embedding.pk -sml 100 -bs 10 -me 20000 -uc True -sp ../trans_data/re/FinRE/lan/448 -mn v448 -ws True -pg 1 > ../trans_data/re/FinRE/lan/448/448.log 2>&1 & 已启动 | |||
| v768 | 768 | 0.0045 | nohup python -u train_model.py -tr ../trans_data/re/FinRE/train.txt -de ../trans_data/re/FinRE/valid.txt -tt re -d lan -l lan_loss -ep ../trans_data/re/FinRE/lan/768/v768.embedding.pk -sml 100 -bs 10 -me 20000 -uc True -sp ../trans_data/re/FinRE/lan/768 -mn v768 -ws True -pg 1 > ../trans_data/re/FinRE/lan/768/768.log 2>&1 & 已启动 |

该实验记录了多个金融事件抽取模型的训练过程,包括pa_lstm_crf和bert_crf模型。实验中调整了最大句子长度、batch_size、学习率等超参数,并观察了验证集和测试集的表现。在标签注意力机制的实验中,发现过大的维度会导致过拟合或运行时间过长。最佳模型v2在验证集上达到0.4215的F1分数,测试集上不同事件类型的F1分数各异。实验还在继续进行以优化模型性能。
2847

被折叠的 条评论
为什么被折叠?



