Description
https://leetcode.com/problems/longest-palindromic-subsequence/
题意:
给定一个字符串,寻找最长回文子序列,返回其长度。
Solving Ideas
https://www.youtube.com/watch?v=_nCsPn7_OgI&t=57s
动态规划:
State:
dp[i][j]
: s.substring(i, j+1)
中最长回文序列的长度
Initial State:
dp[i][i] = 1;
State Transition:
if(s.charAt(i) == s.charAt(j)) dp[i][j] = dp[i+1][j-1] + 2;
else dp[i][j] = Math.max(dp[i+1][j], dp[i][j-1]);
Solution
class Solution {
/**
* dp[i][j]: palindromic sub-sequence's length of substring(i,j+1)
* i,j represent left, right indexes of input string
*
* State transition:
* if(s.charAt(i) == s.charAt(j)) dp[i][j] = dp[i+1][j-1] + 2;
* else dp[i][j] = Math.max(dp[i+1][j], dp[i][j-1]);
*
* Initial state:
* dp[i][i] = 1;
*
* @param s string
* @return the length of longest palindromic sub-sequence
*/
public int longestPalindromeSubseq(String s) {
if (s == null || s.length() == 0) return 0;
int[][] dp = new int[s.length()][s.length()];
for (int i = s.length() - 1; i >= 0; i--) {
dp[i][i] = 1;
for (int j = i + 1; j < s.length(); j++) {
if (s.charAt(i) == s.charAt(j)) {
dp[i][j] = dp[i + 1][j - 1] + 2;
} else {
dp[i][j] = Math.max(dp[i + 1][j], dp[i][j - 1]);
}
}
}
return dp[0][s.length() - 1];
}
}