今天学数据结构时候,看到书中实现一个stack的添加方法中有一个自动扩容的机制,于是乎就想到ArrayList这么一个数据结构中好像也有这么一个机制。于是我就拔了jdk 1.8的源码。
如图:

关于java集合体系我就不在这里描述了,一张关系继承图而已。在上图中我们可以很明显的看到ArrayList有三个构造函数。接下来我将请跟着我的节奏去扒源码。
首先我们从第一个构造函数(无参)开始:
/**
* Shared empty array instance used for default sized empty instances. We
* distinguish this from EMPTY_ELEMENTDATA to know how much to inflate when
* first element is added.
*/
private static final Object[] DEFAULTCAPACITY_EMPTY_ELEMENTDATA = {};
/**
* The array buffer into which the elements of the ArrayList are stored.
* The capacity of the ArrayList is the length of this array buffer. Any
* empty ArrayList with elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA
* will be expanded to DEFAULT_CAPACITY when the first element is added.
*/
transient Object[] elementData; // non-private to simplify nested class access
/**
* Constructs an empty list with an initial capacity of ten.
*/
public ArrayList() {
this.elementData = DEFAULTCAPACITY_EMPTY_ELEMENTDATA;
}
上面的的代码很简单就是为ArrayList存放数据的空数组,唯一需要注意的是ArrayList容器中的数据是不可被序列化的。
初始化一个ArrayList我们就开始用这个ArrayList
-
添加数据
/**
* Appends the specified element to the end of this list.
*
* @param e element to be appended to this list
* @return <tt>true</tt> (as specified by {@link Collection#add})
*/
public boolean add(E e) {
ensureCapacityInternal(size + 1); // Increments modCount!!
elementData[size++] = e;
return true;
}
我们可以看到add方法在添加数据之前进行了容量扩容。
private void ensureCapacityInternal(int minCapacity) {
if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA) {
minCapacity = Math.max(DEFAULT_CAPACITY, minCapacity);
}
ensureExplicitCapacity(minCapacity);
}
这个方法给ArrayList初始化了10个元素
private void ensureExplicitCapacity(int minCapacity) {
modCount++;
// overflow-conscious code
if (minCapacity - elementData.length > 0)
grow(minCapacity);
}
这个方法很简单,保证初始化因子必须比自身大。
/**
* Increases the capacity to ensure that it can hold at least the
* number of elements specified by the minimum capacity argument.
*
* @param minCapacity the desired minimum capacity
*/
private void grow(int minCapacity) {
// overflow-conscious code
int oldCapacity = elementData.length;
int newCapacity = oldCapacity + (oldCapacity >> 1);
if (newCapacity - minCapacity < 0)
newCapacity = minCapacity;
if (newCapacity - MAX_ARRAY_SIZE > 0)
newCapacity = hugeCapacity(minCapacity);
// minCapacity is usually close to size, so this is a win:
elementData = Arrays.copyOf(elementData, newCapacity);
}
grow方法保证了扩容的合法性,每次扩容是用自身加上自身的一半。需要注意扩容的数量为int的上限将会导致内存泄漏哦
关于grow方法最有意思的还是最后一行代码:Arrays.copyOf(elementData,newCapcaity)
/**
* Copies the specified array, truncating or padding with nulls (if necessary)
* so the copy has the specified length. For all indices that are
* valid in both the original array and the copy, the two arrays will
* contain identical values. For any indices that are valid in the
* copy but not the original, the copy will contain <tt>null</tt>.
* Such indices will exist if and only if the specified length
* is greater than that of the original array.
* The resulting array is of exactly the same class as the original array.
*
* @param <T> the class of the objects in the array
* @param original the array to be copied
* @param newLength the length of the copy to be returned
* @return a copy of the original array, truncated or padded with nulls
* to obtain the specified length
* @throws NegativeArraySizeException if <tt>newLength</tt> is negative
* @throws NullPointerException if <tt>original</tt> is null
* @since 1.6
*/
@SuppressWarnings("unchecked")
public static <T> T[] copyOf(T[] original, int newLength) {
return (T[]) copyOf(original, newLength, original.getClass());
}
/**
* Copies the specified array, truncating or padding with nulls (if necessary)
* so the copy has the specified length. For all indices that are
* valid in both the original array and the copy, the two arrays will
* contain identical values. For any indices that are valid in the
* copy but not the original, the copy will contain <tt>null</tt>.
* Such indices will exist if and only if the specified length
* is greater than that of the original array.
* The resulting array is of the class <tt>newType</tt>.
*
* @param <U> the class of the objects in the original array
* @param <T> the class of the objects in the returned array
* @param original the array to be copied
* @param newLength the length of the copy to be returned
* @param newType the class of the copy to be returned
* @return a copy of the original array, truncated or padded with nulls
* to obtain the specified length
* @throws NegativeArraySizeException if <tt>newLength</tt> is negative
* @throws NullPointerException if <tt>original</tt> is null
* @throws ArrayStoreException if an element copied from
* <tt>original</tt> is not of a runtime type that can be stored in
* an array of class <tt>newType</tt>
* @since 1.6
*/
public static <T,U> T[] copyOf(U[] original, int newLength, Class<? extends T[]> newType) {
@SuppressWarnings("unchecked")
T[] copy = ((Object)newType == (Object)Object[].class)
? (T[]) new Object[newLength]
: (T[]) Array.newInstance(newType.getComponentType(), newLength);
System.arraycopy(original, 0, copy, 0,
Math.min(original.length, newLength));
return copy;
}
public static native void arraycopy(Object src, int srcPos,
Object dest, int destPos,
int length);
阅读到到发现ArrayList实现初始化以及扩容方调用的是c++的arrayCopy方法,至于为什么调c++的方法,我想在这里就不用过多的解释了(speed speed speed!!!)
在这里偷了个懒没有在jdk文件里面去找c++的arrayCopy的实现
网上扒拉的代码:
void arraycopy(){
unsignedchar*src=(unsignedchar*)malloc(20*sizeof(unsignedchar));
memset(src,10,20);
unsignedchar*dest=(unsignedchar*)malloc(40*sizeof(unsignedchar));
memset(dest,2,40);
unsignedchar*oldSrc=src;
//movesrcposto5
for(inti=0;i<5;i++){
src++;
}
unsignedchar*oldDest=dest;
for(intj=0;j<20;j++){
dest++;
}
memcpy(dest,src,10);
for(intm=0;m<40;m++){
printf("dest[%d]=%d\n",m,oldDest[m]);
}
}
这段c++实现我就不展开讲了,熟悉c指针这代码阅读起来基本没啥问题。
2.删除数据
/**
* Removes all of the elements from this list. The list will
* be empty after this call returns.
*/
public void clear() {
modCount++;
// clear to let GC do its work
for (int i = 0; i < size; i++)
elementData[i] = null;
size = 0;
}
这代码就超级简单了直接让所有元素变为孤儿,然后就让gc带回老家。
/**
* Removes the element at the specified position in this list.
* Shifts any subsequent elements to the left (subtracts one from their
* indices).
*
* @param index the index of the element to be removed
* @return the element that was removed from the list
* @throws IndexOutOfBoundsException {@inheritDoc}
*/
public E remove(int index) {
rangeCheck(index);
modCount++;
E oldValue = elementData(index);
int numMoved = size - index - 1;
if (numMoved > 0)
System.arraycopy(elementData, index+1, elementData, index,
numMoved);
elementData[--size] = null; // clear to let GC do its work
return oldValue;
}
/**
* Checks if the given index is in range. If not, throws an appropriate
* runtime exception. This method does *not* check if the index is
* negative: It is always used immediately prior to an array access,
* which throws an ArrayIndexOutOfBoundsException if index is negative.
*/
private void rangeCheck(int index) {
if (index >= size)
throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
}
@SuppressWarnings("unchecked")
E elementData(int index) {
return (E) elementData[index];
}
根据数组索引清空元素,并重新初始化容器大小。
/**
* Removes the first occurrence of the specified element from this list,
* if it is present. If the list does not contain the element, it is
* unchanged. More formally, removes the element with the lowest index
* <tt>i</tt> such that
* <tt>(o==null ? get(i)==null : o.equals(get(i)))</tt>
* (if such an element exists). Returns <tt>true</tt> if this list
* contained the specified element (or equivalently, if this list
* changed as a result of the call).
*
* @param o element to be removed from this list, if present
* @return <tt>true</tt> if this list contained the specified element
*/
public boolean remove(Object o) {
if (o == null) {
for (int index = 0; index < size; index++)
if (elementData[index] == null) {
fastRemove(index);
return true;
}
} else {
for (int index = 0; index < size; index++)
if (o.equals(elementData[index])) {
fastRemove(index);
return true;
}
}
return false;
}
这个方法,在开发中尽量不要用,删除一对象,把整个ArrayList都过了一遍,开销太大。(这也是我们常常在看书的时候,ArrayList不适合频繁的删除操作,该方法就是一个很好的证明。
3.数据的查找
/**
* Returns the element at the specified position in this list.
*
* @param index index of the element to return
* @return the element at the specified position in this list
* @throws IndexOutOfBoundsException {@inheritDoc}
*/
public E get(int index) {
rangeCheck(index);
return elementData(index);
}
直接通过索引取数据,是不是简单到到没朋友。
/**
* Returns <tt>true</tt> if this list contains the specified element.
* More formally, returns <tt>true</tt> if and only if this list contains
* at least one element <tt>e</tt> such that
* <tt>(o==null ? e==null : o.equals(e))</tt>.
*
* @param o element whose presence in this list is to be tested
* @return <tt>true</tt> if this list contains the specified element
*/
public boolean contains(Object o) {
return indexOf(o) >= 0;
}
/**
* Returns the index of the first occurrence of the specified element
* in this list, or -1 if this list does not contain the element.
* More formally, returns the lowest index <tt>i</tt> such that
* <tt>(o==null ? get(i)==null : o.equals(get(i)))</tt>,
* or -1 if there is no such index.
*/
public int indexOf(Object o) {
if (o == null) {
for (int i = 0; i < size; i++)
if (elementData[i]==null)
return i;
} else {
for (int i = 0; i < size; i++)
if (o.equals(elementData[i]))
return i;
}
return -1;
查找指定元素,哎,很low的实现.
4.迭代器部分
/**
* Returns an iterator over the elements in this list in proper sequence.
*
* <p>The returned iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
*
* @return an iterator over the elements in this list in proper sequence
*/
public Iterator<E> iterator() {
return new Itr();
}
实现了AbstaractList的iterator()方法

具体的的方法实现我就不扒了,单纯数组实现的数据结构没有什么阅读难度。
int构造参数
/**
* Constructs an empty list with the specified initial capacity.
*
* @param initialCapacity the initial capacity of the list
* @throws IllegalArgumentException if the specified initial capacity
* is negative
*/
public ArrayList(int initialCapacity) {
if (initialCapacity > 0) {
this.elementData = new Object[initialCapacity];
} else if (initialCapacity == 0) {
this.elementData = EMPTY_ELEMENTDATA;
} else {
throw new IllegalArgumentException("Illegal Capacity: "+
initialCapacity);
}
}
按指定因子大小进行初始化
Collection参数初始化
/**
* Constructs a list containing the elements of the specified
* collection, in the order they are returned by the collection's
* iterator.
*
* @param c the collection whose elements are to be placed into this list
* @throws NullPointerException if the specified collection is null
*/
public ArrayList(Collection<? extends E> c) {
elementData = c.toArray();
if ((size = elementData.length) != 0) {
// c.toArray might (incorrectly) not return Object[] (see 6260652)
if (elementData.getClass() != Object[].class)
elementData = Arrays.copyOf(elementData, size, Object[].class);
} else {
// replace with empty array.
this.elementData = EMPTY_ELEMENTDATA;
}
}
这种初始化,是按照传入的Collection进行初始化。是不是简单到没朋友
总结:
ArrayList是一个非常简单的数据结构,它采用数组实现。使用添加数据速度非常快,只要是用到索引数据访问的速度都非常快,非索引操作,是遍历整个数组(非常不划算)。