Gabor滤波器学习:http://blog.youkuaiyun.com/jinshengtao/article/details/17797641
1.在图像处理中,Gabor函数是一个用于边缘提取的线性滤波器。Gabor滤波器的频率和方向表达同人类视觉系统类似。研究发现,Gabor滤波器十分适合纹理表达和分离。在空间域中,一个二维Gabor滤波器是一个由正弦平面波调制的高斯核函数。
2.gabor分为实部和虚部,用实部进行滤波后图像会平滑;虚部滤波后用来检测边缘。
3.Gabor滤波器的脉冲响应,可以定义为一个正弦波(对于二维Gabor滤波器是正弦平面波)乘以高斯函数。由于乘法卷积性质,Gabor滤波器的脉冲响应的傅立叶变换是其调和函数的傅立叶变换和高斯函数傅立叶变换的卷积。该滤波器由实部和虚部组成,二者相互正交。一组不同频率不同方向的Gabor函数数组对于图像特征提取非常有用。
下面给出二维Gabor函数的数学表达:
复数表达:
实数部分:
虚数部分:
其中:
和
下面介绍公式中各个参数的含义,及参数如何配置问题【都从老外那翻译来的】:
波长(λ):它的值以像素为单位指定,通常大于等于2.但不能大于输入图像尺寸的五分之一。
方向(θ):这个参数指定了Gabor函数并行条纹的方向,它的取值为0到360度
相位偏移(φ):它的取值范围为-180度到180度。其中,0he180度分别对应中心对称的center-on函数和center-off函数,而-90度和90度对应反对称函数。
长宽比(γ):空间纵横比,决定了Gabor函数形状(support,我翻译为形状)的椭圆率(ellipticity)。当γ= 1时,形状是圆的。当γ< 1时,形状随着平行条纹方向而拉长。通常该值为0.5
带宽(b):Gabor滤波器的半响应空间频率带宽b和σ/ λ的比率有关,其中σ表示Gabor函数的高斯因子的标准差,如下:
σ的值不能直接设置,它仅随着带宽b变化。带宽值必须是正实数,通常为1,此时,标准差和波长的关系为:σ= 0.56 λ。带宽越小,标准差越大,Gabor形状越大,可见平行兴奋和抑制区条纹数量越多。
我对小波认识:http://blog.youkuaiyun.com/yanmy2012/article/details/8090400
1.Gabor小波对于图像的边缘敏感,能够提供良好的方向选择和尺度选择特性,而且对于光照变化不敏感,能够提供对光照变化良好的适应性。