原题链接
MooFest
Time Limit: 1000MS Memory Limit: 30000K
Total Submissions: 7357 Accepted: 3299
Description
Every year, Farmer John’s N (1 <= N <= 20,000) cows attend “MooFest”,a social gathering of cows from around the world. MooFest involves a variety of events including haybale stacking, fence jumping, pin the tail on the farmer, and of course, mooing. When the cows all stand in line for a particular event, they moo so loudly that the roar is practically deafening. After participating in this event year after year, some of the cows have in fact lost a bit of their hearing.
Each cow i has an associated “hearing” threshold v(i) (in the range 1…20,000). If a cow moos to cow i, she must use a volume of at least v(i) times the distance between the two cows in order to be heard by cow i. If two cows i and j wish to converse, they must speak at a volume level equal to the distance between them times max(v(i),v(j)).
Suppose each of the N cows is standing in a straight line (each cow at some unique x coordinate in the range 1…20,000), and every pair of cows is carrying on a conversation using the smallest possible volume.
Compute the sum of all the volumes produced by all N(N-1)/2 pairs of mooing cows.
Input
-
Line 1: A single integer, N
-
Lines 2…N+1: Two integers: the volume threshold and x coordinate for a cow. Line 2 represents the first cow; line 3 represents the second cow; and so on. No two cows will stand at the same location.
Output -
Line 1: A single line with a single integer that is the sum of all the volumes of the conversing cows.
Sample Input
4
3 1
2 5
2 6
4 3
Sample Output
57
Source
USACO 2004 U S Open
题意:奶牛节:N头奶牛每头耳背程度v,坐标x。两牛交流需要音量为distance * max(v(i),v(j)),求所有牛两两交流所需总和?
思路:将奶牛的耳背程度按照升序排列后,从小到大取的话每一次都是已经有的奶牛里最耳背的,就只需要将之前所有的奶牛距离*该奶牛的耳背程度即可,结果就是所有的乘积的加和。比如对于样例来说将最不耳背的奶牛放入后,我们可以通过后面的三个操作得到结果
res += 2 * (|6-5|)
res += 3 * (|1-5| + |1-6|)
res ++ 4 * (|2-1| + |2-5| + |2-6|)
我们通过观察可以得到一个通式
res += v[i] * (x[i] * 小于等于x[i]的元素个数 - 小于等于x[i]的元素的位置和 - x[i] * 大于x[i]的元素个数 + 大于x[i]的元素的位置和)
我们明显经常用到求区间和的操作,那么我们就可以使用树状数组来快速地实现求区间和的操作。建立一个奶牛个数的BIT数组,和位置和的BIT数组
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
const int maxn = 20000 + 10;
typedef long long ll;
pair<ll,ll> a[maxn];//first代表音量v,second代表位置x
void add(ll *bit,ll x,ll m){
while(x<maxn){
bit[x] += m;
x += (x & -x);
}
}
ll sum(ll *bit,ll x){
ll s=0;
while(x>0){
s += bit[x];
x -= (x & -x);
}
return s;
}
int main(){
ll bita[maxn],bitb[maxn],n;//分别代表位置小于等于a[i].x的元素的个数和这些元素的位置和
ll res = 0;
memset(bita,0,sizeof(bita));
memset(bitb,0,sizeof(bitb));
scanf("%lld",&n);
for(int i=0;i<n;i++) scanf("%lld%lld",&a[i].first,&a[i].second);
sort(a,a+n);
add(bita,a[0].second,1);
add(bitb,a[0].second,a[0].second);
for(int i=1;i<n;i++){
ll lowbitasum=sum(bita,a[i].second);
ll lowbitbsum=sum(bitb,a[i].second);
//res += a[i].first * (a[i].second*lowbitasum - lowbitbsum - a[i].second*(sum(bita,maxn-1)-lowbitasum) + (sum(bitb,maxn-1)-lowbitbsum));
res += a[i].first * (a[i].second * (lowbitasum*2 - sum(bita,maxn-1)) - lowbitbsum*2 + sum(bitb,maxn-1));
add(bita,a[i].second,1);
add(bitb,a[i].second,a[i].second);
}
cout << res << endl;
return 0;
}