从Deepmind最新成果DreamerV3启发的通用AI技术分析

DeepMind的DreamerV3算法首次在无需人类数据的情况下学会在Minecraft中收集钻石,展示出强大的探索和规划能力。这一进展涉及强化学习、世界模型、批评者和演员组件,与通用AI模型相呼应。Alphazero在围棋领域的成功也基于类似原理,通过世界模型表示游戏状态,批评者加速网络收敛。

一、背景

本文系个人观点:错漏在所难免,仅供参考

北京时间 1 月 12 日,DeepMind 官方推特发文,正式官宣 DreamerV3,这是首个能在游戏「我的世界」(Minecraft) 中不参考人类数据,就能从头开始收集钻石的通用算法,解决了 AI 领域中的又一重要挑战。英伟达 AI 科学家 Jim Fan 表示,和 AlphaGo 下围棋比,我的世界任务数量是无限的,环境变化是无限的,知识也是有隐藏信息的。
早在 2019 年夏天,Minecraft的开发公司就提出了「钻石挑战」,悬赏可以在游戏里找钻石的 AI 算法,直到 NeurIPS 2019 上,在提交的 660 多份参赛作品中,没有一个 AI 能胜任这项任务。
但 DreamerV3 的出现改变了这一现状,钻石是一项高度组合和长期的任务,需要复杂的探索和规划,新算法能在没有任何人工数据辅助的情况下收集钻石。或许效率还有很大改进空间,但 AI 智能体现在可以从头开始学习收集钻石这一事实本身,是一个重要的里程碑。
参考:
DeepMind 发布强化学习通用算法 DreamerV3,AI 成精自学捡钻石

DreamerV3 由 3 个从回放经验 (replayed experience) 中同时训练,且不共享梯度的神经网络组成:
1、world model:预测潜在动作的未来结果
2、critic:判断每种情况的 value
3、actor:学习如何使有价值的情况成为可能
在这里插入图片描述
从之前下围棋的Alphazero到现在Minecraft中挖钻石的DreamerV3,其技术发展脉络是怎样的?相互之间是什么联系呢?

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

揽星河2023

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值