from imgaug import augmenters as iaa
import imgaug as ia
import matplotlib.pyplot as plt
augmentation = iaa.SomeOf((0, 3), [
iaa.Fliplr(0.5),
iaa.Flipud(0.5),
iaa.OneOf([iaa.Affine(rotate=90),
iaa.Affine(rotate=90),
iaa.Affine(rotate=270),
iaa.Affine(rotate=180),
iaa.Affine(rotate=180),
iaa.Affine(rotate=270)]),
iaa.Multiply((0.8, 1.5)),
iaa.GaussianBlur(sigma=(0.0, 3.0))
])
temp_aug_bbox = []
for bbox in bboxes_resize1:
temp_aug_bbox.append(ia.BoundingBox(x1=bbox[1],
x2=bbox[3],
y1=bbox[0],
y2=bbox[2]))
bbs = ia.BoundingBoxesOnImage(temp_aug_bbox, shape=image.shape)
# if debug:
# pass
# plt.figure()
# plt.imshow(bbs.draw_on_image(image, thickness=2))
seq_det = augmentation.to_deterministic()
image = seq_det.augment_image(image)
bbs_aug = seq_det.augment_bounding_boxes([bbs])[0]
# plt.figure()
# plt.imshow(bbs_aug.draw_on_image(image_aug, thickness=2))
bboxes_resize1 = []
for one in bbs_aug.bounding_boxes:
bboxes_resize1.append([ one.y1, one.x1, one.y2, one.x2])
if debug:
pass
debug_show(image, bboxes_resize1)
分割任务
from imgaug import augmenters as iaa
import imgaug as ia
import matplotlib.pyplot as plt
def img_aug2(image, mask_img):
image = np.array(image)
mask_img = np.a