【手语数据集】The Greek Sign Language (GSL) Dataset

Download:https://zenodo.org/record/3941811#.YY99F73P2DV

Abstract

The Greek Sign Language (GSL) is a large-scale RGB+D dataset, suitable for Sign Language Recognition (SLR) and Sign Language Translation (SLT). The video captures are conducted using an Intel RealSense D435 RGB+D camera at a rate of 30 fps. Both the RGB and the depth streams are acquired in the same spatial resolution of 848×480 pixels. To increase variability in the videos, the camera position and orientation is slightly altered within subsequent recordings. Seven different signers are employed to perform 5 individual and commonly met scenarios in different public services. The average length of each scenario is twenty sentences.

Description

The dataset contains 10,290 sentence instances, 40,785 gloss instances, 310 unique glosses (vocabulary size) and 331 unique sentences, with 4.23 glosses per sentence on average. Each signer is asked to perform the pre-defined dialogues five consecutive times. In all cases, the simulation considers a deaf person communicating with a single public service employee. The involved signer performs the sequence of glosses of both agents in the discussion. For the annotation of each gloss sequence, GSL linguistic experts are involved. The given annotations are at individual gloss and gloss sequence level. A translation of the gloss sentences to spoken Greek is also provided.

Evaluation

The GSL dataset includes the 3 evaluation setups:

a) Signer-dependent continuous sign language recognition (GSL SD) – roughly 80% of videos are used for training, corresponding to 8,189 instances. The rest 1,063 (10%) were kept for validation and 1,043 (10%) for testing.
b) Signer-independent continuous sign language recognition (GSL SI) – the selected test gloss sequences are not used in the training set, while all the individual glosses exist in the training set. In GSL SI, the recordings of one signer are left out for validation and testing (588 and 881 instances, respectively). The rest 8821 instances are utilized for training.
c) Isolated gloss sign language recognition (GSL isol.) – The validation set consists of 2,231 gloss instances, the test set 3,500, while the remaining 34,995 are used for training. All 310 unique glosses are seen in the training set.

TrainValTestTotal
34,9952,3313,50040,826

OpenHands 指标验证

操作基本流程可参考:https://blog.youkuaiyun.com/qq_31537885/article/details/124674515

  • 自行 于 config.yaml 补充 test_pipeline 参数,如下:
data:
	...	...
	
    test_pipeline:   # self-add.
        dataset:
            _target_: openhands.datasets.isolated.GSLDataset
            split_file: "GSL/GSL_split/GSL_isolated/test_greek_iso.csv"  # 解压`GSL.zip`可得
            root_dir: "GSL/GSL_pose"  	# 解压`GSL.zip`可得
            class_mappings_file_path: "GSL/GSL_split/GSL_isolated/iso_classes.csv"   # 解压`GSL.zip`可得
            splits: "test"
            modality: "pose"
            # inference_mode: true  # self-add
            inference_mode: false  # self-add

        transforms:
            - PoseSelect:
                preset: mediapipe_holistic_minimal_27
            # - PoseTemporalSubsample:
            #       num_frames: 32
            - CenterAndScaleNormalize:
                reference_points_preset: shoulder_mediapipe_holistic_minimal_27
                scale_factor: 1
  • Inference and Testing
import omegaconf
from openhands.apis.inference import InferenceModel

# cfg = omegaconf.OmegaConf.load("path/to/config.yaml")
model = InferenceModel(cfg=cfg)
model.init_from_checkpoint_if_available()
if cfg.data.test_pipeline.dataset.inference_mode:
    model.test_inference()
else:
    model.compute_test_accuracy()

ex.

# lstm
/raid/zhengjian/OpenHands/openhands/apis/inference.py:21: LightningDeprecationWarning: The `LightningModule.datamodule` property is deprecated in v1.3 and will be removed in v1.5. Access the datamodule through using `self.trainer.datamodule` instead.
  self.datamodule.setup(stage=stage)
Found 310 classes in test splits
Loading checkpoint from: datasets/GSL/gsl/lstm/epoch=107-step=118043.ckpt
219batch [00:09, 22.85batch/s]
Accuracy for 3500 samples: 85.42857360839844%  # < 86.6% published


# sl-gcn
/raid/zhengjian/OpenHands/openhands/apis/inference.py:21: LightningDeprecationWarning: The `LightningModule.datamodule` property is deprecated in v1.3 and will be removed in v1.5. Access the datamodule through using `self.trainer.datamodule` instead.
  self.datamodule.setup(stage=stage)
Found 310 classes in test splits
Loading checkpoint from: datasets/GSL/gsl/sl_gcn/epoch=71-step=78695.ckpt
219batch [01:24,  2.58batch/s]
Accuracy for 3500 samples: 95.37142944335938%   # < 95.4% published

Pose Data

import pickle

# 样例,由OpenHands中的`GSL_pose`文件夹提供
fpath = "datasets/GSL/GSL_pose/health1_signer1_rep1_glosses/glosses0000.pkl"    
	   
f=open(fpath,'rb')
data=pickle.load(f)
 
import pdb
pdb.set_trace()

""" 
(Pdb) data.keys()
dict_keys(['keypoints', 'confidences'])
(Pdb) data['keypoints']
array([[[ 4.68016177e-01,  2.54167974e-01, -5.32646418e-01],
        [ 4.75983620e-01,  2.25574315e-01, -5.07086813e-01],
        [ 4.84772474e-01,  2.24665165e-01, -5.07136345e-01],
        ...,
        [ 3.59789759e-01,  2.36041218e-01,  1.39313692e-03],
        [ 3.68174613e-01,  2.20924214e-01,  3.40915076e-03],
        [ 3.74168962e-01,  2.08521932e-01,  6.30392320e-03]],

       [[ 4.73744392e-01,  2.98126549e-01, -3.48104566e-01],
        [ 4.82605368e-01,  2.61325389e-01, -3.33466351e-01],
        [ 4.90915090e-01,  2.59218067e-01, -3.33474070e-01],
        ...,
        [ 3.43209326e-01,  1.75836265e-01, -2.00132020e-02],
        [ 3.52375984e-01,  1.58609509e-01, -1.65062286e-02],
        [ 3.57829779e-01,  1.42162174e-01, -1.19863013e-02]]])
(Pdb) data['keypoints'].shape
(16, 75, 3)
(Pdb) data['confidences']
array([[0.99999869, 0.99999833, 0.99999821, ..., 1.        , 1.        ,
        1.        ],
       [0.99999875, 0.99999839, 0.99999833, ..., 1.        , 1.        ,
        1.        ],
       [0.99999875, 0.99999839, 0.99999833, ..., 1.        , 1.        ,
        1.        ],
       ...,
       [0.99999899, 0.99999881, 0.99999875, ..., 0.        , 0.        ,
        0.        ],
       [0.99999905, 0.99999887, 0.99999881, ..., 0.        , 0.        ,
        0.        ],
       [0.99999911, 0.99999893, 0.99999887, ..., 1.        , 1.        ,
        1.        ]])

(Pdb) data['confidences'].shape
(16, 75)
"""

请添加图片描述

写在最后:若本文章对您有帮助,请点个赞啦 ٩(๑•̀ω•́๑)۶

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

爱学习的卡比兽

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值