C#利用最小二乘法拟合任意次函数曲线

本文介绍了最小二乘法作为逼近原函数的手段,它不强求函数通过所有离散点,而是使误差平方和最小。在C#中,通过最小二乘法可以实现对任意次函数曲线的拟合,从而更好地反映数据趋势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、背景知识

给出一组离散点,确定一个函数逼近原函数,插值是这样的一种手段。在实际中,数据不可避免的会有误差,插值函数会将这些误差也包括在内。

因此,我们需要一种新的逼近原函数的手段: ①不要求过所有的点(可以消除误差影响); ②尽可能表现数据的趋势,靠近这些点。

二、定义

最小二乘法(又称最小平方法)是一种数学技术。它通过最小化误差的平方和寻找数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小 [1]  [6-7]  。

最小二乘法还可用于曲线拟合,其他一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达,具体可以查阅相关资料

三、最小二乘法拟合任意次函数曲线实例

public class Lea
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

未来无限

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值