逆波兰表达式求值
难度:中等
根据逆波兰表示法
,求表达式的值。
有效的算符包括 +、-、*、/
。每个运算对象可以是整数,也可以是另一个逆波兰表达式。
说明:
- 整数除法只保留整数部分。
- 给定逆波兰表达式总是有效的。换句话说,表达式总会得出有效数值且不存在除数为 0 的情况。
示例 1:
输入:tokens = ["2","1","+","3","*"]
输出:9
解释:该算式转化为常见的中缀算术表达式为:((2 + 1) * 3) = 9
示例 2:
输入:tokens = ["4","13","5","/","+"]
输出:6
解释:该算式转化为常见的中缀算术表达式为:(4 + (13 / 5)) = 6
示例 3:
输入:tokens = ["10","6","9","3","+","-11","*","/","*","17","+","5","+"]
输出:22
解释:
该算式转化为常见的中缀算术表达式为:
((10 * (6 / ((9 + 3) * -11))) + 17) + 5
= ((10 * (6 / (12 * -11))) + 17) + 5
= ((10 * (6 / -132)) + 17) + 5
= ((10 * 0) + 17) + 5
= (0 + 17) + 5
= 17 + 5
= 22
提示:
1 <= tokens.length <= 104
- tokens[i] 要么是一个算符
("+"、"-"、"*" 或 "/")
,要么是一个在范围[-200, 200]
内的整数
逆波兰表达式:
逆波兰表达式是一种后缀表达式,所谓后缀就是指算符写在后面。
平常使用的算式则是一种中缀表达式,如 ( 1 + 2 ) * ( 3 + 4 ) 。
该算式的逆波兰表达式写法为 ( ( 1 2 + ) ( 3 4 + ) * ) 。
逆波兰表达式主要有以下两个优点:
- 去掉括号后表达式无歧义,上式即便写成 1 2 + 3 4 + * 也可以依据次序计算出正确结果。
- 适合用栈操作运算:遇到数字则入栈;遇到算符则取出栈顶两个数字进行计算,并将结果压入栈中。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/evaluate-reverse-polish-notation
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
class Solution {
public int evalRPN(String[] tokens) {
Stack<Integer> stack = new Stack<>();
int num1, num2;
for (String str: tokens) {
switch (str) {
case "+":
num2 = stack.pop();
num1 = stack.pop();
stack.push(num1 + num2);
break;
case "-":
num2 = stack.pop();
num1 = stack.pop();
stack.push(num1 - num2);
break;
case "*":
num2 = stack.pop();
num1 = stack.pop();
stack.push(num1 * num2);
break;
case "/":
num2 = stack.pop();
num1 = stack.pop();
stack.push(num1 / num2);
break;
default:
stack.push(Integer.parseInt(str));
}
}
return stack.pop();
}
}