import BinaryTree.BinaryTreeNode;
//二叉树的深度——平衡二叉树
public class Q391 {
/**
* 题目:输入一棵二叉树的根节点,判断该树是不是平衡二叉树
* 思路:要判断二叉树,需要知道每个结点的深度(通过Q39来得到)
*/
public static void main(String[] args) {
BinaryTreeNode root1 = new BinaryTreeNode();
BinaryTreeNode node1 = new BinaryTreeNode();
BinaryTreeNode node2 = new BinaryTreeNode();
BinaryTreeNode node3 = new BinaryTreeNode();
BinaryTreeNode node4 = new BinaryTreeNode();
root1.leftNode = node1;
root1.rightNode = node2;
node1.leftNode = node3;
node1.rightNode = node4;
root1.value = 10;
node1.value = 5;
node2.value = 12;
node3.value = 4;
node4.value = 7;
Q391 test = new Q391();
System.out.println(test.IsBlanced(root1));
}
//求是否为平衡二叉树,通过布尔值返回
public static boolean IsBlanced(BinaryTreeNode root){
if(root == null){
return true;
}
int left = TreeDepth(root.leftNode);
int right = TreeDepth(root.rightNode);
int var = left - right;
if(var > 1 || var < -1){
return false;
}
//当二叉树的左右子树均为平衡二叉树时,才返回True
return IsBlanced(root.leftNode)&&IsBlanced(root.rightNode);
}
//递归实现求树的深度(与Q39一致)
private static int TreeDepth(BinaryTreeNode root){
if(root == null){
return 0;
}
int nleft = TreeDepth(root.leftNode);
int nright = TreeDepth(root.rightNode);
//返回树的深度
return (nleft > nright) ? (nleft + 1): (nright + 1);
}
}
//二叉树的深度——平衡二叉树
public class Q391 {
/**
* 题目:输入一棵二叉树的根节点,判断该树是不是平衡二叉树
* 思路:要判断二叉树,需要知道每个结点的深度(通过Q39来得到)
*/
public static void main(String[] args) {
BinaryTreeNode root1 = new BinaryTreeNode();
BinaryTreeNode node1 = new BinaryTreeNode();
BinaryTreeNode node2 = new BinaryTreeNode();
BinaryTreeNode node3 = new BinaryTreeNode();
BinaryTreeNode node4 = new BinaryTreeNode();
root1.leftNode = node1;
root1.rightNode = node2;
node1.leftNode = node3;
node1.rightNode = node4;
root1.value = 10;
node1.value = 5;
node2.value = 12;
node3.value = 4;
node4.value = 7;
Q391 test = new Q391();
System.out.println(test.IsBlanced(root1));
}
//求是否为平衡二叉树,通过布尔值返回
public static boolean IsBlanced(BinaryTreeNode root){
if(root == null){
return true;
}
int left = TreeDepth(root.leftNode);
int right = TreeDepth(root.rightNode);
int var = left - right;
if(var > 1 || var < -1){
return false;
}
//当二叉树的左右子树均为平衡二叉树时,才返回True
return IsBlanced(root.leftNode)&&IsBlanced(root.rightNode);
}
//递归实现求树的深度(与Q39一致)
private static int TreeDepth(BinaryTreeNode root){
if(root == null){
return 0;
}
int nleft = TreeDepth(root.leftNode);
int nright = TreeDepth(root.rightNode);
//返回树的深度
return (nleft > nright) ? (nleft + 1): (nright + 1);
}
}