1104. Sum of Number Segments (20)
Given a sequence of positive numbers, a segment is defined to be a consecutive subsequence. For example, given the sequence {0.1, 0.2, 0.3, 0.4}, we have 10 segments: (0.1) (0.1, 0.2) (0.1, 0.2, 0.3) (0.1, 0.2, 0.3, 0.4) (0.2) (0.2, 0.3) (0.2, 0.3, 0.4) (0.3) (0.3, 0.4) (0.4).
Now given a sequence, you are supposed to find the sum of all the numbers in all the segments. For the previous example, the sum of all the 10 segments is 0.1 + 0.3 + 0.6 + 1.0 + 0.2 + 0.5 + 0.9 + 0.3 + 0.7 + 0.4 = 5.0.
Input Specification:
Each input file contains one test case. For each case, the first line gives a positive integer N, the size of the sequence which is no more than 105. The next line contains N positive numbers in the sequence, each no more than 1.0, separated by a space.
Output Specification:
For each test case, print in one line the sum of all the numbers in all the segments, accurate up to 2 decimal places.
Sample Input:
4
0.1 0.2 0.3 0.4
Sample Output:
5.00
结题思路 :
题意要求我们计算一个确定数列的所有子序列的元素总和。
要求1:子序列非空;
要点2:最后总和保留两位小数。
程序步骤:
第一步、对每个输入的序列元素,计算其在左右子序列中出现的个数;
第二步、累加全部数据以后,输出最终结果。
(0.1)
(0.1, 0.2)
(0.1, 0.2, 0.3)
(0.1, 0.2, 0.3, 0.4)
(0.2)
(0.2, 0.3)
(0.2, 0.3, 0.4)
(0.3)
(0.3, 0.4)
(0.4).
统计数据:
index value times
1 0.1 4
2 0.2 6
3 0.3 6
4 0.4 4
可以简单得到
times=index(num-index+1)
具体程序(AC)如下:
#include <iostream>
using namespace std;
int main()
{
int num;
cin>>num;
double sum=0;
int pre=1;
double value;
for(int i=0;i<num;++i)
{
cin>>value;
sum+=value*pre*(num-i);
++pre;
}
printf("%.2lf\n",sum);
}