Dinic算法的时间复杂度的理论上界是O(N2*M)(N是结点数,M是边数),但实际上Dinic算法比这个理论上界好得多。如果所有边容量均为1,那么时间复杂度是O(min(N0.67,M0.5)*M);对于二分图最大匹配这样的特殊图,时间复杂度是O(N0.5*M)。
不小心把以上公式格式调错了…
#include <bits/stdc++.h>
using namespace std;
const int N = 1e4+100;
int n,m,S,T,tot;
int head[N];
struct node{
int v,cap,nxt;
}edge[int(2e5+100)];
int cur[N],deep[N];
void ae(int u,int v,int cap){ //前向星加边
edge[++tot] = node{v,cap,head[u]};
head[u] = tot;
}
bool bfs(){ //构建分层图
memset(deep,-1,sizeof(deep)); //-1表示未访问
queue<int>q;
q.push(S);
deep[S] = 0;
while(!q.empty()){
int u = q.front();
for(int i = head[u]; ~i;i = edge[i].nxt){
int v = edge[i].v;
if(deep[v]==-1&&edge[i].cap>0){
q.push(v);
deep[v] = deep[u]+1;
if(v==T) return 1; //提前退出
}
}
q.pop();
}
return 0;
}
int dfs(int u,int f){ //寻找增广网
int flow = 0,d;
if(u==T||f==0) return f;
for(int &i = cur[u]; ~i;i = edge[i].nxt){ //当前弧优化
int v = edge[i].v;
if(deep[v]>deep[u]&&edge[i].cap>0&&(d=dfs(v,min(f,edge[i].cap)))){
edge[i].cap -= d;
edge[i^1].cap += d;
f -= d;
flow += d;
if(!f) break;
}
}
if(flow==0) deep[u] = -1; //删除无法增广的点
return flow;
}
int dinic(){
int ans = 0;
while(bfs()){
memcpy(cur, head, sizeof(head)); //重置cur数组
ans += dfs(S,1e9);
}
return ans;
}
int main() {
freopen("a.txt","r",stdin);
ios::sync_with_stdio(0);
cin>>n>>m>>S>>T;
memset(head,-1,sizeof(head)); //head初始化-1
tot = -1; //边从0开始编号
for(int i = 1;i <= m;i ++){
int u,v,l;
cin>>u>>v>>l;
ae(u,v,l);
ae(v,u,0);
}
cout<<dinic()<<endl;
return 0;
}