经典论文:
- 《Item-Based Collaborative Filtering Recommendation Algorithms 》基于item的协同过滤推荐算
- 《 Factorization Meets the Neighborhood: a Multifaceted Collaborative Filtering Model 》
- 《Matrix factorization techniques for recommender systems》矩阵分解,提供了源
Facebook实践:recommending items to more than a billion people
Quora是如何做推荐的?
KDD2018的一篇最好的论文
《Real-time Personalization using Embeddings for Search Ranking at Airbnb》
谷歌的三篇论文
- 《Deep Neural Networks for YouTube Recommendations》
- 《Wide & Deep Learning for Recommender Systems》
- 《Ad Click Prediction: a View from the Trenches》
(--广告预估,4.0和5.0时代基本在follow这个)
推荐视频课程:七月在线推荐系统实战
话外:可加qq:1723356771,请备注推荐系统实战课程购买,直接有直降100多的优惠券,不需分享砍价
推荐系统的参考阅读 https://time.geekbang.org/column/article/8113
打包资料下载地址:
https://pan.baidu.com/share/init?surl=pbjQ94QBcRerv6ZW3-sopg
密码:6mds