OpenCV中的神经网络

来源:http://blog.youkuaiyun.com/delltdk/article/details/8912867
OpenCV中封装了类CvANN_MLP,因而神经网络利用很方便。
首先构建一个网络模型:
CvANN_MLP ann;
Mat structure(1,3,CV_32SC1);
structure.at(0) = 10;
structure.at(0) = 4;
structure.at(0) = 2; // structure中表示每一层中神经元数目
ann.create(structure,CvANN_MLP::SIGMOID_SYM,1,1); // 很明显第二个参数选择的是激活函数的类型
然后需要对训练数据放在两个Mat结构中。第一个是存储训练数据的Mat train,第二个是存储类别的Mat label。其中,train的每一行代表一个训练样例,label的对应的一行是训练样例的类别。比如有25个属于7个类别的训练样例,每个样例为16维向量。则train结构为25*16,label结构为25*7。需要解释的是类别数据,label中一行表示样例所处类别,如果属于第一类则为(1,0,0,0,0,0,0),第二类为(0,1,0,0,0,0,0)…
接下来需要给ann提供一个样例的权重向量Mat weight,它标记的是训练样例的权重,这里都初始化为1:
Mat weight;
weight.ones(1,25,CV_32FC1);
接下来可以做训练了:
ann.train(train,label,weight);
训练结束后用ann来做分类,输入为Mat testSample,testSample为1*16的向量,输出为Mat output,output为1*7向量:
ann.predict(testSample,output);
最后找到output中的最大值就知道所属类别maxPos了:
int maxPos;
double maxVal;
minMaxLoc(output,0,&maxVal,0,&maxPos);

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值