【opencv有趣应用】基于MobileNet + SSD的物体检测

今天学习使用另外的模型进行物体检测

当前目标检测的算法有很多,如rcnn系列、yolo系列和ssd,前端网络如vgg、AlexNet、SqueezeNet,一种常用的方法是将前端网络设为MobileNet进行特征提取和加速,后端算法为SSD来真正进行目标检测。

之前我们学习了使用darknet上的基于coco数据集训练的yolov3模型来搞,这次我们使用在tensorflow上训练的基于coco数据集训练的MobileNet + SSD模型来搞。

import cv2
import numpy as np


def readAllCleassNames(filename):
    with open(filename, 'rt') as f:
        classNames = f.read().rstrip('\n').split('\n')
    return classNames


if __name__ == '__main__':
    # ======================= step 1: 先获得所有的类别信息
    classNames = readAllCleassNames('file/coco_classnames.txt')
    print(len(classNames
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值