[C#]银行家算法的实现

本文详细介绍了银行家算法的原理和C#实现,包括死锁的四个条件、安全状态的概念,以及银行家算法的设计思想、程序流程、数据结构等。通过窗口设计和代码实现,演示了如何在C#环境中应用银行家算法检查系统安全状态和输出安全序列。同时,指出了程序存在的不足和待解决的问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.死锁

死锁,顾名思义,是一种锁住不可自行解开的死局。

在操作系统中,“死锁”用于描述资源分配时,进程互相抢占资源,又因为需求的资源被别的进程抢占,只好互相等待,以至于等待循环中的所有进程均无法正常运行的情况。

死锁形成需要四个条件,这四个条件缺少一个,就不会形成死锁。

死锁的四个条件

1)互斥条件

    即对于某资源在一段时间内仅允许一个进程占有使用。

2)占有且等待条件/请求和保持条件

    在进程已经占有一个或多个资源的情况下,若它仍申请新的资源,在等待获得新的资源时,进程仍会继续占有旧有资源,不会主动释放。

3)不可抢占条件

    直到占有该资源的进程使用完毕之前,其他任何进程均不应该强行抢占该资源。

4)循环等待条件

    若干个进程之间形成了一个等待循环。


2.安全状态

若针对目前资源分配情况,系统可以找到某种次序为进程分配资源,使得所有进程能够依次运行成功,则称系统此时的分配状态是安全的,分配资源的次序称为“安全序列”。

安全状态时系统中无死锁,所以所有避免死锁的算法都尽可能地使系统进入安全状态。

值得注意的是,即使是安全状态下的系统,如果资源分配不当,仍然可以使系统变为不安全状态。


3.银行家算法

1)设计思想

在系统中,进程发起一项资源分配请求,由系统检查是否可以满足该分配请求,若可以,应暂时满足该请求,并查看此时系统是否仍是安全状态。

2)程序流程图

可以分为三个功能模块,第一个模块检查需求是否可以被满足,第二个模块检查系统是否安全,第三个模块是主程序,通过调用前两个模块实现资源分配或请求驳回。

3)数据结构

设有m种资源,n个进程。

int[] Available[m] 系统内可用资源

int[,] Max[n,m] 进程对每种资源的最大需求

int[,] Allocation[n,m] 已分配给各个进程的资源

int[,] Need[n,m] 目前各个进程对各个资源的需求数

[显然有Need=Max-Allocation]

int[,] Require[m] 对于各种资源的请求函数

bool[] Finish[n] 进程是否可以成功运行的标志

int[] Work[m] 用于分配资源的向量

[定义:Work=Available-Require]

4)窗体设计


5)窗体代码

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawi
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值