C++中蚁群优化算法的实现

本文介绍了一种基于粒子群优化(PSO)算法的实现方法,该算法通过初始化种群并迭代更新粒子的位置和速度来寻找最优解。文章详细展示了算法的流程,包括初始化种群、评估适应度、更新个体最佳位置、全局最佳位置等关键步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

#include <ctime>
#include <cstdlib>
#include <memory>

#define frand() ((double)rand()/(double)RAND_MAX)
#define MAXLONG (2147483647)

double * pso_optimization(int s, int p, int d, int T, double c1, double c2, double *vmax, double wmax, double wmin, double *domax, double *domin, CAL_FIT cal_fit, void *adds)
{
    srand(time(NULL));
    double *swm_v = (double*)malloc(s*p*d*sizeof(double));
    double *swm_d = (double*)malloc(s*p*d*sizeof(double));
    double *sbest = (double*)malloc(s*d*sizeof(double));
    double *gbest = (double*)malloc(d*sizeof(double));
    double *fswm_v = swm_v, *fswm_d = swm_d;
    memset(swm_v, 0, sizeof(swm_v));
    double *fdomax = domax, *fdomin = domin, *fvmax = vmax;
    for (int i = 0; i < s; i++)
        for (int j = 0; j < p; j++)
        {
            fdomax = domax; fdomin = domin;
            for (int k = 0; k < d; k++, fdomax++, fdomin++, fswm_d++)
                *fswm_d = (frand()*(*fdomax-*fdomin))+*fdomin;
        }

    double *fsbest = sbest, fitness = 0;
    double nowbest = 0, *nowidx = NULL;
    double nowsbest = 0, *nowsidx = NULL;
    double *ffsbest = NULL, *fgbest = NULL;
    double w = 0;
    for (int t = 0; t < T; t++)
    {
        w = wmax-(double)t*(wmax-wmin)/(double)T;
        fswm_d = swm_d; fsbest = sbest;
        nowidx = NULL; nowbest = -MAXLONG;
        for (int i = 0; i < s; i++, fsbest+=d)
        {
            nowsbest = -MAXLONG; nowsidx = NULL;
            for (int j = 0; j < p; j++, fswm_d+=d)
            {
                fitness = cal_fit(fswm_d, d, adds);
                if (fitness >= nowsbest)
                {
                    nowsbest = fitness;
                    nowsidx = fswm_d;
                }
            }
            memcpy(fsbest, nowsidx, d*sizeof(double));
            if (nowsbest >= nowbest)
            {
                nowbest = nowsbest;
                nowidx = fsbest;
            }
        }
        memcpy(gbest, nowidx, d*sizeof(double));
        if (t >= T) break;
        fsbest = sbest; fswm_v = swm_v; fswm_d = swm_d;
        for (int i = 0; i < s; i++)
        {
            for (int j = 0; j < p; j++)
            {
                fgbest = gbest; ffsbest = fsbest;
                fdomax = domax; fdomin = domin; fvmax = vmax;
                for (int k = 0; k < d; k++, fgbest++, ffsbest++, fswm_v++, fswm_d++, fdomax++, fdomin++, fvmax++)
                {
                    *fswm_v = max(-*fvmax, min(*fswm_v*w+c1*frand()*(*ffsbest-*fswm_d)+c2*frand()*(*fgbest-*fswm_d), *fvmax));
                    *fswm_d = max(*fdomin, min(*fswm_d+*fswm_v, *fdomax));
                }
            }
            fsbest = ffsbest;
        }
    }
    free(swm_v); free(swm_d); free(sbest);
    return gbest;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值