数据库索引数据结构-二叉查找树

1、定义:

二叉排序树或者是一棵空树,或者是具有下列性质的二叉树:
(1)若左子树不空,则左子树上所有结点的值均小于它的根结点的值;
(2)若右子树不空,则右子树上所有结点的值均大于它的根结点的值;
(3)左、右子树也分别为二叉排序树;
(4)没有键值相等的节点。
在这里插入图片描述
如上图所示:50的左子树不为空,则50的左子树上所有结点20、15、30都是小于50的。

2、查找

1、任何一个数据的查找过程都需要从根结点出发,沿某一个路径朝叶子结点前进。因此查找中数据比较次数与树的形态密切相关。
2、当树中每个结点左右子树高度大致相同时,树高为logN。则平均查找长度与logN成正比,查找的平均时间复杂度在O(logN)数量级上。
3、当先后插入的关键字有序时,BST退化成单支树结构。此时树高n。平均查找长度为(n+1)/2,查找的平均时间复杂度在O(N)数量级上。

3、插入与删除

1、新结点插入到树的叶子上,完全不需要改变树中原有结点的组织结构。插入一个结点的代价与查找一个不存在的数据的代价完全相同
2、当删除一个结点P,首先需要定位到这个结点P,这个过程需要一个查找的代价。然后稍微改变一下树的形态。如果被删除结点的左、右子树只有一个存在,则改变形态的代价仅为O(1)。如果被删除结点的左、右子树均存在,只需要将当P的左孩子的右孩子的右孩子的…的右叶子结点与P互换,在改变一些左右子树即可。因此删除操作的时间复杂度最大不会超过O(logN)。

4、小结

1、查找最好时间复杂度O(logN),最坏时间复杂度O(N)。
2、插入删除操作算法简单,时间复杂度与查找差不多。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值