下面的例子不错: 对于动态规划,能学到不少东西;
你要清楚每一步都在做什么,划分细致就能够拆解清楚!
动态规划是一种强大的算法设计策略,用于解决具有重叠子问题和最优子结构特点的问题。在面对动态规划类题目时,遵循以下步骤可以帮助你系统地解决问题:
1. 定义状态
- 确定变量:识别哪些变量会影响问题的解。例如,在背包问题中,关键变量可能是物品的重量和价值,以及剩余的背包容量。
- 状态表示:用这些变量定义状态。例如,
dp[i][w]
可能表示前i个物品放入容量为w的背包所能获得的最大价值。2. 状态转移方程
- 建立关系:找到状态之间的关系,即如何从一个状态转移到另一个状态。这通常涉及到一个递推公式。例如,在斐波那契数列中,
F(n) = F(n-1) + F(n-2)
。- 边界条件:确定递推公式的起始状态,通常是最简单的情况,例如
dp[0][w] = 0
(背包问题中没有物品时的价值)。3. 选择方向
- 自底向上:从最简单的状态开始,逐步构建更复杂的状态。这种方法通常使用循环实现,避免了重复计算。
- 自顶向下:从复杂的状态开始,递归地解决子问题。这种方法通常使用递归和记忆化(memoization)来避免重复计算。
4. 初始化
- 初始状态:根据问题的性质初始化DP数组。例如,所有状态初始化为0或无穷大。
5. 计算
- 填充DP表:根据状态转移方程填充DP表或数组。确保按正确的顺序填充,以便在计算每个状态时,所需的前驱状态已经被计算。
6. 返回结果
- 解析答案:DP过程完成后,根据问题要求解析出最终答案。这可能是DP表中的某个特定值,也可能是回溯整个DP过程找到最优解的具体方案。
7. 复杂度分析