模型预处理层介绍(2) - Hashing
Hashing的方式本质上也是分桶,在上一篇我们提到过的bucket的方式进行分桶,而在Hashingd的方法中,所有的输入都会通过Hash映射进行转换成int,然后再进行分桶。
该层将分类输入转换为散列输出。它在元素上将一个 int型或字符串 转换为固定范围内的int型。稳定哈希函数使用tensorflow::ops::Fingerprint在所有平台上产生一致的输出。
该层默认使用FarmHash64,它在不同的平台上提供一致的散列输出,并且通过彻底混合输入位,在不同的调用中都是稳定的,而不考虑设备和上下文。
如果您想混淆散列输出,还可以在构造函数中传递一个随机salt参数。在这种情况下,该层将使用SipHash64哈希函数,将salt值作为哈希函数的额外输入。
tf.keras.layers.Hashing(
num_bins,
mask_value=None,
salt=None,
output_mode='int',
sparse=False,
**kwargs
)
举个例子来说
layer = tf.keras.layers.Hashing(num_bins=3)
inp = [['A'], ['B'], ['C'], ['D'], ['E']]
layer(inp)
执行上述语句的结果是:
<tf.Tensor: shape=(5, 1), dtype=int64, numpy=
array([[1],
[0],
[1],
[1],
[2]], dtype=int64)>
我们向Hashing层传入了一个字符串的list的嵌套list,尝试使用Hashing的方法进行分桶。
从结果上我们可以看到,[A,C,D]被分到一个桶,[B] [E]被分成另外两个桶。
被分入哪个桶取决于输入的字符串或者int被HASH成什么样的数值。
从下面的代码可以直观的看出,其实不管传入的int还是string,都会在 tf.as_string(values)
统一处理成string,然后在tf.strings.to_hash_bucket_*
中全部再进行分桶。
def call(self, inputs):
inputs = utils.ensure_tensor(inputs)
if isinstance(inputs, tf.SparseTensor):
indices = tf.SparseTensor(
indices=inputs.indices,
values=self._hash_values_to_bins(inputs.values),
dense_shape=inputs.dense_shape,
)
else:
indices = self._hash_values_to_bins(inputs)
return utils.encode_categorical_inputs(
indices,
output_mode=self.output_mode,
depth=self.num_bins,
sparse=self.sparse,
dtype=self.compute_dtype,
)
def _hash_values_to_bins(self, values):
"""Converts a non-sparse tensor of values to bin indices."""
hash_bins = self.num_bins
mask = None
# If mask_value is set, the zeroth bin is reserved for it.
if self.mask_value is not None and hash_bins > 1:
hash_bins -= 1
mask = tf.equal(values, self.mask_value)
# Convert all values to strings before hashing.
if values.dtype.is_integer:
values = tf.as_string(values)
# Hash the strings.
if self.strong_hash:
values = tf.strings.to_hash_bucket_strong(
values, hash_bins, name="hash", key=self.salt
)
else:
values = tf.strings.to_hash_bucket_fast(
values, hash_bins, name="hash"
)
if mask is not None:
values = tf.add(values, tf.ones_like(values))
values = tf.where(mask, tf.zeros_like(values), values)
return values
Hash 的作用:
Hash :散列,通过关于键值(key)的函数,将数据映射到内存存储中一个位置来访问。这个过程叫做Hash,这个映射函数称做散列函数,存放记录的数组称做散列表(Hash Table)。
后面补充一下FarmHash64的处理代码,仅供参考:
FarmHash64
//Google FarmHash
#include <bits/stdc++.h>
typedef std::pair<uint64_t, uint64_t> uint128_t;
inline uint64_t Uint128Low64(const uint128_t x) { return x.first; }
inline uint64_t Uint128High64(const uint128_t x) { return x.second; }
inline uint128_t Uint128(uint64_t lo, uint64_t hi) { return uint128_t(lo, hi); }
#define STATIC_INLINE static inline
using namespace std;
using ui = unsigned int;
using ul = unsigned long;
using uc = unsigned char;
using ull = unsigned long long;
// Some primes between 2^63 and 2^64 for various uses.
static const uint64_t k0 = 0xc3a5c85c97cb3127ULL;
static const uint64_t k1 = 0xb492b66fbe98f273ULL;
static const uint64_t k2 = 0x9ae16a3b2f90404fULL;
#define uint32_in_expected_order(x) (x)
#define uint64_in_expected_order(x) (x)
STATIC_INLINE uint64_t Fetch64(const char *p) {
uint64_t result;
memcpy(&result, p, sizeof(result));
return uint64_in_expected_order(result);
}
STATIC_INLINE uint32_t Fetch32(const char *p) {
uint32_t result;
memcpy(&result, p, sizeof(result));
return uint32_in_expected_order(result);
}
STATIC_INLINE uint32_t bswap_32(const uint32_t x) {
uint32_t y = x;
for (size_t i = 0; i<sizeof(uint32_t)>> 1; i++) {
uint32_t d = sizeof(uint32_t) - i - 1;
uint32_t mh = ((uint32_t)0xff) << (d << 3);
uint32_t ml = ((uint32_t)0xff) << (i << 3);
uint32_t h = x & mh;
uint32_t l = x & ml;
uint64_t t = (l << ((d - i) << 3)) | (h >> ((d - i) << 3));
y = t | (y & ~(mh | ml));
}
return y;
}
STATIC_INLINE uint64_t bswap_64(const uint64_t x) {
uint64_t y = x;
for (size_t i = 0; i<sizeof(uint64_t)>> 1; i++) {
uint64_t d = sizeof(uint64_t) - i - 1;
uint64_t mh = ((uint64_t)0xff) << (d << 3);
uint64_t ml = ((uint64_t)0xff) << (i << 3);
uint64_t h = x & mh;
uint64_t l = x & ml;
uint64_t t = (l << ((d - i) << 3)) | (h >> ((d - i) << 3));
y = t | (y & ~(mh | ml));
}
return y;
}
STATIC_INLINE uint32_t Bswap32(uint32_t val) { return bswap_32(val); }
STATIC_INLINE uint64_t Bswap64(uint64_t val) { return bswap_64(val); }
// FARMHASH PORTABILITY LAYER: bitwise rot
STATIC_INLINE uint32_t BasicRotate32(uint32_t val, int shift) {
// Avoid shifting by 32: doing so yields an undefined result.
return shift == 0 ? val : ((val >> shift) | (val << (32 - shift)));
}
STATIC_INLINE uint64_t BasicRotate64(uint64_t val, int shift) {
// Avoid shifting by 64: doing so yields an undefined result.
return shift == 0 ? val : ((val >> shift) | (val << (64 - shift)));
}
STATIC_INLINE uint32_t Rotate32(uint32_t val, int shift) {
return BasicRotate32(val, shift);
}
STATIC_INLINE uint64_t Rotate64(uint64_t val, int shift) {
return BasicRotate64(val, shift);
}
// Hash 128 input bits down to 64 bits of output.
// This is intended to be a reasonably good hash function.
// May change from time to time, may differ on different platforms, may differ
// depending on NDEBUG.
STATIC_INLINE uint64_t Hash128to64(uint128_t x) {
// Murmur-inspired hashing.
const uint64_t kMul = 0x9ddfea08eb382d69ULL;
uint64_t a = (Uint128Low64(x) ^ Uint128High64(x)) * kMul;
a ^= (a >> 47);
uint64_t b = (Uint128High64(x) ^ a) * kMul;
b ^= (b >> 47);
b *= kMul;
return b;
}
STATIC_INLINE uint64_t ShiftMix(uint64_t val) {
return val ^ (val >> 47);
}
STATIC_INLINE uint64_t HashLen16(uint64_t u, uint64_t v) {
return Hash128to64(Uint128(u, v));
}
STATIC_INLINE uint64_t HashLen16(uint64_t u, uint64_t v, uint64_t mul) {
// Murmur-inspired hashing.
uint64_t a = (u ^ v) * mul;
a ^= (a >> 47);
uint64_t b = (v ^ a) * mul;
b ^= (b >> 47);
b *= mul;
return b;
}
STATIC_INLINE uint64_t HashLen0to16(const char *s, size_t len) {
if (len >= 8) {
uint64_t mul = k2 + len * 2;
uint64_t a = Fetch64(s) + k2;
uint64_t b = Fetch64(s + len - 8);
uint64_t c = Rotate64(b, 37) * mul + a;
uint64_t d = (Rotate64(a, 25) + b) * mul;
return HashLen16(c, d, mul);
}
if (len >= 4) {
uint64_t mul = k2 + len * 2;
uint64_t a = Fetch32(s);
return HashLen16(len + (a << 3), Fetch32(s + len - 4), mul);
}
if (len > 0) {
uint8_t a = s[0];
uint8_t b = s[len >> 1];
uint8_t c = s[len - 1];
uint32_t y = static_cast<uint32_t>(a) + (static_cast<uint32_t>(b) << 8);
uint32_t z = len + (static_cast<uint32_t>(c) << 2);
return ShiftMix(y * k2 ^ z * k0) * k2;
}
return k2;
}
// This probably works well for 16-byte strings as well, but it may be overkill
// in that case.
STATIC_INLINE uint64_t HashLen17to32(const char *s, size_t len) {
uint64_t mul = k2 + len * 2;
uint64_t a = Fetch64(s) * k1;
uint64_t b = Fetch64(s + 8);
uint64_t c = Fetch64(s + len - 8) * mul;
uint64_t d = Fetch64(s + len - 16) * k2;
return HashLen16(Rotate64(a + b, 43) + Rotate64(c, 30) + d,
a + Rotate64(b + k2, 18) + c, mul);
}
// Return a 16-byte hash for 48 bytes. Quick and dirty.
// Callers do best to use "random-looking" values for a and b.
STATIC_INLINE pair<uint64_t, uint64_t> WeakHashLen32WithSeeds(
uint64_t w, uint64_t x, uint64_t y, uint64_t z, uint64_t a, uint64_t b) {
a += w;
b = Rotate64(b + a + z, 21);
uint64_t c = a;
a += x;
a += y;
b += Rotate64(a, 44);
return make_pair(a + z, b + c);
}
// Return a 16-byte hash for s[0] ... s[31], a, and b. Quick and dirty.
STATIC_INLINE pair<uint64_t, uint64_t> WeakHashLen32WithSeeds(
const char* s, uint64_t a, uint64_t b) {
return WeakHashLen32WithSeeds(Fetch64(s),
Fetch64(s + 8),
Fetch64(s + 16),
Fetch64(s + 24),
a,
b);
}
// Return an 8-byte hash for 33 to 64 bytes.
STATIC_INLINE uint64_t HashLen33to64(const char *s, size_t len) {
uint64_t mul = k2 + len * 2;
uint64_t a = Fetch64(s) * k2;
uint64_t b = Fetch64(s + 8);
uint64_t c = Fetch64(s + len - 8) * mul;
uint64_t d = Fetch64(s + len - 16) * k2;
uint64_t y = Rotate64(a + b, 43) + Rotate64(c, 30) + d;
uint64_t z = HashLen16(y, a + Rotate64(b + k2, 18) + c, mul);
uint64_t e = Fetch64(s + 16) * mul;
uint64_t f = Fetch64(s + 24);
uint64_t g = (y + Fetch64(s + len - 32)) * mul;
uint64_t h = (z + Fetch64(s + len - 24)) * mul;
return HashLen16(Rotate64(e + f, 43) + Rotate64(g, 30) + h,
e + Rotate64(f + a, 18) + g, mul);
}
uint64_t FarmHash64(const char *s, size_t len) {
const uint64_t seed = 81;
if (len <= 32) {
if (len <= 16) {
return HashLen0to16(s, len);
} else {
return HashLen17to32(s, len);
}
} else if (len <= 64) {
return HashLen33to64(s, len);
}
// For strings over 64 bytes we loop. Internal state consists of
// 56 bytes: v, w, x, y, and z.
uint64_t x = seed;
uint64_t y = seed * k1 + 113;
uint64_t z = ShiftMix(y * k2 + 113) * k2;
pair<uint64_t, uint64_t> v = make_pair(0, 0);
pair<uint64_t, uint64_t> w = make_pair(0, 0);
x = x * k2 + Fetch64(s);
// Set end so that after the loop we have 1 to 64 bytes left to process.
const char* end = s + ((len - 1) / 64) * 64;
const char* last64 = end + ((len - 1) & 63) - 63;
assert(s + len - 64 == last64);
do {
x = Rotate64(x + y + v.first + Fetch64(s + 8), 37) * k1;
y = Rotate64(y + v.second + Fetch64(s + 48), 42) * k1;
x ^= w.second;
y += v.first + Fetch64(s + 40);
z = Rotate64(z + w.first, 33) * k1;
v = WeakHashLen32WithSeeds(s, v.second * k1, x + w.first);
w = WeakHashLen32WithSeeds(s + 32, z + w.second, y + Fetch64(s + 16));
std::swap(z, x);
s += 64;
} while (s != end);
uint64_t mul = k1 + ((z & 0xff) << 1);
// Make s point to the last 64 bytes of input.
s = last64;
w.first += ((len - 1) & 63);
v.first += w.first;
w.first += v.first;
x = Rotate64(x + y + v.first + Fetch64(s + 8), 37) * mul;
y = Rotate64(y + v.second + Fetch64(s + 48), 42) * mul;
x ^= w.second * 9;
y += v.first * 9 + Fetch64(s + 40);
z = Rotate64(z + w.first, 33) * mul;
v = WeakHashLen32WithSeeds(s, v.second * mul, x + w.first);
w = WeakHashLen32WithSeeds(s + 32, z + w.second, y + Fetch64(s + 16));
std::swap(z, x);
return HashLen16(HashLen16(v.first, w.first, mul) + ShiftMix(y) * k0 + z,
HashLen16(v.second, w.second, mul) + x,
mul);
}
int main(int argc, char** argv){
string str = "最強|Hash #2";
uint64_t x = FarmHash64(str.c_str(), str.size());
cout<< x <<endl;
return 0;
}
参考
https://blog.youkuaiyun.com/cyongxue/article/details/19544107
https://tensorflow.google.cn/api_docs/python/tf/keras/layers/Hashing
https://github.com/keras-team/keras/blob/v2.11.0/keras/layers/preprocessing/hashing.py#L35-L298
https://blog.youkuaiyun.com/qq_43561345/article/details/116612560