1.决策树
1.决策树的基本原理:
决策树是一种在分类与回归中都有着非常广泛应用的算法,它的原理是通过一系列问题进行if/else的推导,最终实现决策。
2.决策树的构建:
#导入numpy
import numpy as np
#导入画图工具
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
#导入tree模型和和数据集加载工具
from sklearn import tree,datasets
#导入数据集拆分工具
from sklearn.model_selection import train_test_split
wine = datasets.load_wine()
#只选取数据集的前两个特征
X,y = wine.data[:,:2],wine.target
#将数据集拆分成训练集和测试集
X_train,X_test,y_train,y_test = train_test_split(X,y)
#设定决策树分类器最大深度为1
clf = tree.DecisionTreeClassifier(max_depth=1)
#拟合训练数据集
clf.fit(X_train,y_train)
#定义图像中分区的颜色和散点的颜色
cmap_light = ListedColormap(['#FFAAAA','#AAFFAA','#AAAAFF'])
cmap_bold = ListedColormap(['#FF0000','#00FF00','#0000FF'])
#分别用