推荐系统02:个性化推荐系统有哪些绕不开的经典问题

本文探讨了推荐系统中的评分预测和行为预测问题,以及冷启动、探索与利用、安全等顽疾。评分预测通过预测用户对物品的评分建立连接,而行为预测则预测用户行为,如点击率。两者都是推荐系统的关键,其中行为预测更为重要。文章还提及了推荐系统的一些常见挑战和未来讨论话题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

推荐系统发展到了今天,已经出现了一些常见的问题,一部分已经有很好的解决方案,另外一部分却还没有通用解决方案,需要根据实际情况做一下具体的分析。
今天我来和你聊一聊这些问题。我会首先讲讲一些推荐系统中的问题模式,然后再专门说一些需要面对的具体问题。

推荐系统的问题模式

我们知道,推荐系统的使命是为用户和物品建立连接,建立的方式是提前找出那些隐藏的连接呈现给用户,这是一个预测问题;所以推荐系统的预测问题模式,从达成的连接目标角度区分,有两大类:

1.评分预测;
2.行为预测。

因为评分和行为是用户对推荐结果的两类反馈,我们给他们推荐了一个或多个物品,目的是希望他们“消费”,这种消费反应在用户行为上,比如“点击查看”,信息咨询类的还有“阅读完成”,视频音乐类的有“播放完成”,电商类的“加入购物车”等。

整个行为呈现一个漏斗形状,从曝光到最终消费完成。最后在用户完成消费后,产品方一般还希望他们告诉自己消费的体验,这时候就有评分了;所以不同推荐系统的任务也不同,有的直接去预测用户如果消费完之后会给多少评分,更多的推荐系统则会分层,致力于预测用户的行为。下面我分别详细说一下这两类问题。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

曾牛

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值