经典CNN算法解析实战-第J6周:ResNeXt-50实战解析

本文详细介绍了ResNeXt-50模型的背景、结构,特别是分组卷积的概念,以及如何使用Pytorch复现该模型,通过对比ResNet,展示了ResNeXt在提升精度的同时降低计算开销的优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、课题背景和开发环境

📌第J6周:ResNeXt-50实战解析📌

  • 语言:Python3、Pytorch
  • 📌本周任务:📌
    – 1. 阅读ResNeXt论文,了解作者的构建思路
    – 2. 对比我们之前介绍的ResNet50V2、DenseNet算法
    – 3.使用ResNeXt-50算法完成猴痘病识别

二、模型结构

ResNeXt是由何凯明团队在2017年CVPR会议上提出来的新型图像分类网络。ResNeXt是ResNet的升级版,在ResNet的基础上,引入了cardinality的概念,类似于ResNet,ResNeXt也有ResNeXt-50,ResNeXt-101的版本。ResNeXt论文原文如下:
Aggregated Residual Transformations for Deep Neural Networks.pdf

在ResNeXt的论文中,作者提出了当时普遍存在的一个问题,如果要提高模型的准确率,往往采取加深网络或者加宽网络的方法。虽然这种方法是有效的,但是随之而来的,是网络设计的难度和计算开销的增加。为了一点精度的提升往往需要付出更大的代价。因此,需要一个更好的策略,在不额外增加计算代价的情况下,提升网络的精度。由此,何等人提出了cardinality的概念。

下图是ResNet(左)与ResNeXt(右)block的差异。在ResNet中,输入的具有256个通道的特征经过1×1卷积压缩4倍到64个通道,之后3×3的卷积核用于处理特征,经1×1卷积扩大通道数与原特征残差连接后输出。ResNeXt也是相同的处理策略,但在ResNeXt中,输入的具有256个通道的特征被分为32个组,每组被压缩64倍到4个通道后进行处理。32个组相加后与原特征残差连接后输出。这里cardinatity指的是一个block中所具有的相同分支的数目。
ResNet与ResNeXt的block差异

三、分组卷积

ResNeXt中采用的分组卷机简单来说就是将特征图分为不同的组,再对每组特征图分别进行卷积,这个操作可以有效的降低计算量。

在分组卷积中,每个卷积核只处理部分通道,比如下图中,红色卷积核只处理红色的通道,绿色卷积核只处理绿色通道,黄色卷积核只处理黄色通道。此时每个卷积核有2个通道,每个卷积核生成一张特征图。
在这里插入图片描述
在这里插入图片描述

四、Pytorch复现ResNext-50模型

1.分组卷积模块

pytorch

class GroupedConvBlock(nn.Module):
    def __init__(self, in_channel, kernel_size=3, stride=1, groups=32):
        super(GroupedConvBlock, self).__init__()
        self.g_channel = in_channel//groups
        self.groups = groups
        self.conv = nn.Conv2d(self.g_channel, self.g_channel, kernel_size=3, stride=stride, padding=1, bias=False)
        self.norm = nn.BatchNorm2d(in_channel)
        self.relu = nn.ReLU(inplace=True)
        
    
    def forward(self, x):
        g_list = []
        # 分组进行卷积
        for c in range(self.groups):
            g = x[:,c*self.g_channel:(c+1)*self.g_channel,:,:]
            g = self.conv(g)
            g_list.append(g)
        x = torch.cat(g_list, dim=1)
        x = self.norm(x)
        x = self.relu(x)
        return x

2.定义残差单元

pytorch

''' Residual Block '''
class Block(nn.Module):
    def __init__(self, in_channel, filters, kernel_size=3, stride=1, groups=32, conv_shortcut=True):
        super(Block, self).__init__()
        self.shortcut = conv_shortcut
        if self.shortcut:
            self.short = nn.Conv2d(in_channel, 2*filters, kernel_size=1, stride=stride, padding=0, bias=False)
        elif stride>1:
            self.short = nn.MaxPool2d(kernel_size=1, stride=stride, padding=0)
        else:
            self.short = nn.Identity()
        
        self.conv1 = nn.Sequential(
            nn.Conv2d(in_channel, filters, kernel_size=1, stride=1, bias=False),
            nn.BatchNorm2d(filters),
            nn.ReLU(True)
        )
        self.conv2 = GroupedConvBlock(in_channel=filters, kernel_size=kernel_size, stride=stride, groups=groups)
        self.conv3 = nn.Sequential(
            nn.Conv2d(filters, 2*filters, kernel_size=1, stride=1, bias=False),
            nn.BatchNorm2d(2*filters)
        )
        self.relu = nn.ReLU(inplace=True)
    
    def forward(self, x):
        if self.shortcut:
            x2 = self.short(x)
        else:
            x2 = self.short(x)
        x1 = self.conv1(x)
        x1 = self.conv2(x1)
        x1 = self.conv3(x1)
        x = x1 + x2
        x = self.relu(x)
        return x

3.堆叠残差单元

每个stack的第一个block的输入和输出的shape是不一致的,所以残差连接都需要使用1*1卷积升维后才能进行Add操作。

而其他block的输入和输出的shape是一致的,所以可以直接执行Add操作。

pytorch

class Stack(nn.Module):
    def __init__(self, in_channel, filters, blocks, stride=2, groups=32):
        super(Stack, self).__init__()
        self.conv = nn.Sequential()
        self.conv.add_module(str(0), Block(in_channel, filters, stride=stride, groups=groups, conv_shortcut=True))
        for i in range(1, blocks):
            self.conv.add_module(str(i), Block(2*filters, filters, stride=1, groups=groups, conv_shortcut=False))
    
    def forward(self, x):
        x = self.conv(x)
        return x

4.搭建ResNext-50网络

pytorch

''' ResNeXt50 '''
class ResNeXt50(nn.Module):
    def __init__(self,
                 include_top=True,  # 是否包含位于网络顶部的全链接层
                 preact=False,  # 是否使用预激活
                 use_bias=True,  # 是否对卷积层使用偏置
                 input_shape=[32, 3, 224, 224],
                 classes=1000,
                 pooling=None):  # 用于分类图像的可选类数
        super(ResNeXt50, self).__init__()
        
        self.conv1 = nn.Sequential()
        self.conv1.add_module('conv', nn.Conv2d(3, 64, 7, stride=2, padding=3, bias=use_bias, padding_mode='zeros'))
        if not preact:
            self.conv1.add_module('bn', nn.BatchNorm2d(64))
            self.conv1.add_module('relu', nn.ReLU())
        self.conv1.add_module('max_pool', nn.MaxPool2d(kernel_size=3, stride=2, padding=1))
        
        self.conv2 = Stack(64, 128, 3, stride=1)
        self.conv3 = Stack(256, 256, 4, stride=2)
        self.conv4 = Stack(512, 512, 6, stride=2)
        self.conv5 = Stack(1024, 1024, 3, stride=2)
        
        self.post = nn.Sequential()
        if preact:
            self.post.add_module('bn', nn.BatchNorm2d(2048))
            self.post.add_module('relu', nn.ReLU())
        if include_top:
            self.post.add_module('avg_pool', nn.AdaptiveAvgPool2d((1, 1)))
            self.post.add_module('flatten', nn.Flatten())
            self.post.add_module('fc', nn.Linear(2048, classes))
        else:
            if pooling=='avg':
                self.post.add_module('avg_pool', nn.AdaptiveAvgPool2d((1, 1)))
            elif pooling=='max':
                self.post.add_module('max_pool', nn.AdaptiveMaxPool2d((1, 1)))
    
    def forward(self, x):
        x = self.conv1(x)
        x = self.conv2(x)
        x = self.conv3(x)
        x = self.conv4(x)
        x = self.conv5(x)
        x = self.post(x)
        return x

5.查看模型摘要

pytorch

''' 调用并将模型转移到GPU中(我们模型运行均在GPU中进行) '''
model = ResNeXt50(n_class=num_classes).to(device)
#model = ResNeXt50(n_class=num_classes).to(device)
''' 显示网络结构 '''
torchsummary.summary(model, (32, 3, 224, 224))
#torchinfo.summary(model)
print(model)
----------------------------------------------------------------
        Layer (type)               Output Shape         Param #
================================================================
            Conv2d-1         [-1, 64, 112, 112]           9,472
       BatchNorm2d-2         [-1, 64, 112, 112]             128
              ReLU-3         [-1, 64, 112, 112]               0
         MaxPool2d-4           [-1, 64, 56, 56]               0
            Conv2d-5          [-1, 256, 56, 56]          16,384
            Conv2d-6          [-1, 128, 56, 56]           8,192
       BatchNorm2d-7          [-1, 128, 56, 56]             256
              ReLU-8          [-1, 128, 56, 56]               0
            Conv2d-9            [-1, 4, 56, 56]             144
           Conv2d-10            [-1, 4, 56, 56]             144
           Conv2d-11            [-1, 4, 56, 56]             144
           Conv2d-12            [-1, 4, 56, 56]             144
           Conv2d-13            [-1, 4, 56, 56]             144
           Conv2d-14            [-1, 4, 56, 56]             144
           Conv2d-15            [-1, 4, 56, 56]             144
           Conv2d-16            [-1, 4, 56, 56]             144
           Conv2d-17            [-1, 4, 56, 56]             144
           Conv2d-18            [-1, 4, 56, 56]             144
           Conv2d-19            [-1, 4, 56, 56]             144
           Conv2d-20            [-1, 4, 56, 56]             144
           Conv2d-21            [-1, 4, 56, 56]             144
           Conv2d-22            [-1, 4, 56, 56]             144
           Conv2d-23            [-1, 4, 56, 56]             144
           Conv2d-24            [-1, 4, 56, 56]             144
           Conv2d-25            [-1, 4, 56, 56]             144
           Conv2d-26            [-1, 4, 56, 56]             144
           Conv2d-27            [-1, 4, 56, 56]             144
           Conv2d-28            [-1, 4, 56, 56]             144
           Conv2d-29            [-1, 4, 56, 56]             144
           Conv2d-30            [-1, 4, 56, 56]             144
           Conv2d-31            [-1, 4, 56, 56]             144
           Conv2d-32            [-1, 4, 56, 56]             144
           Conv2d-33            [-1, 4, 56, 56]             144
           Conv2d-34            [-1, 4, 56, 56]             144
           Conv2d-35            [-1, 4, 56, 56]             144
           Conv2d-36            [-1, 4, 56, 56]             144
           Conv2d-37            [-1, 4, 56, 56]             144
           Conv2d-38            [-1, 4, 56, 56]             144
           Conv2d-39            [-1, 4, 56, 56]             144
           Conv2d-40            [-1, 4, 56, 56]             144
      BatchNorm2d-41          [-1, 128, 56, 56]             256
             ReLU-42          [-1, 128, 56, 56]               0
 GroupedConvBlock-43          [-1, 128, 56, 56]               0
           Conv2d-44          [-1, 256, 56, 56]          32,768
      BatchNorm2d-45          [-1, 256, 56, 56]             512
             ReLU-46          [-1, 256, 56, 56]               0
            Block-47          [-1, 256, 56, 56]               0
         Identity-48          [-1, 256, 56, 56]               0
           Conv2d-49          [-1, 128, 56, 56]          32,768
      BatchNorm2d-50          [-1, 128, 56, 56]             256
             ReLU-51          [-1, 128, 56, 56]               0
           Conv2d-52            [-1, 4, 56, 56]             144
           Conv2d-53            [-1, 4, 56, 56]             144
           Conv2d-54            [-1, 4, 56, 56]             144
           Conv2d-55            [-1, 4, 56, 56]             144
           Conv2d-56            [-1, 4, 56, 56]             144
           Conv2d-57            [-1, 4, 56, 56]             144
           Conv2d-58            [-1, 4, 56, 56]             144
           Conv2d-59            [-1, 4, 56, 56]             144
           Conv2d-60            [-1, 4, 56, 56]             144
           Conv2d-61            [-1, 4, 56, 56]             144
           Conv2d-62            [-1, 4, 56, 56]             144
           Conv2d-63            [-1, 4, 56, 56]             144
           Conv2d-64            [-1, 4, 56, 56]             144
           Conv2d-65            [-1, 4, 56, 56]             144
           Conv2d-66            [-1, 4, 56, 56]             144
           Conv2d-67            [-1, 4, 56, 56]             144
           Conv2d-68            [-1, 4, 56, 56]             144
           Conv2d-69            [-1, 4, 56, 56]             144
           Conv2d-70            [-1, 4, 56, 56]             144
           Conv2d-71            [-1, 4, 56, 56]             144
           Conv2d-72            [-1, 4, 56, 56]             144
           Conv2d-73            [-1, 4, 56, 56]             144
           Conv2d-74            [-1, 4, 56, 56]             144
           Conv2d-75            [-1, 4, 56, 56]             144
           Conv2d-76            [-1, 4, 56, 56]             144
           Conv2d-77            [-1, 4, 56, 56]             144
           Conv2d-78            [-1, 4, 56, 56]             144
           Conv2d-79            [-1, 4, 56, 56]             144
           Conv2d-80            [-1, 4, 56, 56]             144
           Conv2d-81            [-1, 4, 56, 56]             144
           Conv2d-82            [-1, 4, 56, 56]             144
           Conv2d-83            [-1, 4, 56, 56]             144
      BatchNorm2d-84          [-1, 128, 56, 56]             256
             ReLU-85          [-1, 128, 56, 56]               0
 GroupedConvBlock-86          [-1, 128, 56, 56]               0
           Conv2d-87          [-1, 256, 56, 56]          32,768
      BatchNorm2d-88          [-1, 256, 56, 56]             512
             ReLU-89          [-1, 256, 56, 56]               0
            Block-90          [-1, 256, 56, 56]               0
         Identity-91          [-1, 256, 56, 56]               0
           Conv2d-92          [-1, 128, 56, 56]          32,768
      BatchNorm2d-93          [-1, 128, 56, 56]             256
             ReLU-94          [-1, 128, 56, 56]               0
           Conv2d-95            [-1, 4, 56, 56]             144
           Conv2d-96            [-1, 4, 56, 56]             144
           Conv2d-97            [-1, 4, 56, 56]             144
           Conv2d-98            [-1, 4, 56, 56]             144
           Conv2d-99            [-1, 4, 56, 56]             144
          Conv2d-100            [-1, 4, 56, 56]             144
          Conv2d-101            [-1, 4, 56, 56]             144
          Conv2d-102            [-1, 4, 56, 56]             144
          Conv2d-103            [-1, 4, 56, 56]             144
          Conv2d-104            [-1, 4, 56, 56]             144
          Conv2d-105            [-1, 4, 56, 56]             144
          Conv2d-106            [-1, 4, 56, 56]             144
          Conv2d-107            [-1, 4, 56, 56]             144
          Conv2d-108            [-1, 4, 56, 56
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值