强化学习(RL)

强化学习-Reinforcement learning

参考:

1. 强化学习:基本概念 + 应用场景 + 主流算法

什么是强化学习?

强化学习并不是某一种特定的算法,而是一类算法的统称。如果用来做对比的话,他跟监督学习,无监督学习 是类似的,是一种统称的学习方式。

                                      强化学习是机器学习的学习方法之一

强化学习算法的思路非常简单,以游戏为例,如果在游戏中采取某种策略可以取得较高的得分,那么就进一步「强化」这种策略,以期继续取得较好的结果。这种策略与日常生活中的各种「绩效奖励」非常类似。我们平时也常常用这样的策略来提高自己的游戏水平。

强化学习和监督学习、无监督学习 最大的不同就是不需要大量的“数据喂养”,而是通过自己不停的尝试来学会某些技能。

入门:

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值