AF3 OpenFoldDataset类解读

AlphaFold3 data_modules 模块的 OpenFoldDataset 类是一个自定义的数据集类,继承自 torch.utils.data.Dataset。它的目的是在训练时实现 随机过滤器(stochastic filters),用于从多个不同的数据集(OpenFoldSingleDataset 或 OpenFoldSingleMultimerDataset)中进行样本选择和过滤。该类具有一些 数据增强 和 过滤 的机制,以提高模型的训练质量。

源代码:

class OpenFoldDataset(torch.utils.data.Dataset):
    """
        Implements the stochastic filters applied during AlphaFold's training.
        Because samples are selected from constituent datasets randomly, the
        length of an OpenFoldFilteredDataset is arbitrary. Samples are selected
        and filtered once at initialization.
    """

    def __init__(self,
                 datasets: Union[Sequence[OpenFoldSingleDataset], Sequence[OpenFoldSingleMultimerDataset]],
                 probabilities: Sequence[float],
                 epoch_len: int,
                 generator: torch.Generator = None,
                 _roll_at_init: bool = True,
                 ):
        self.datasets = datasets
        self.probabilities = probabilities
        self.epoch_len = epoch_len
        self.generator = generator

        self.datapoints = None

        self._samples = [self.looped_samples(i) for i in range(len(self.datasets))]
        if _roll_at_init:
            self.reroll()

    @staticmethod
    def deterministic_train_filter(
        cache_entry: Any,
        max_resolution: float = 9.,
        max_single_aa_prop: float = 0.8,
        *args, **kwargs
    ) -> bool:
        # Hard filters
        resolution = cache_entry.get("resolution", None)
        seqs = [cache_entry["seq"]]

        return all([resolution_filter(resolution=resolution,
                                      max_resolution=max_resolution),
                    aa_count_filter(seqs=seqs,
                                    max_single_aa_prop=max_single_aa_prop)])

    @staticmethod
    def get_stochastic_train_filter_prob(
        cache_entry: Any,
        *args, **kwargs
    ) -> float:
        # Stochastic filters
        probabilities = []

        cluster_size = cache_entry.get("cluster_size", None)
        if cluster_size is not None and cluster_size > 0:
            probabilities.append(1 / cluster_size)

        chain_length = len(cache_entry["seq"])
 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值