PyTorch torch.nn.Embedding类介绍

torch.nn.Embedding 是 PyTorch 中用于查找表(lookup table)的一个层类,通常用于处理离散数据(如单词、字符、分类特征等)的嵌入表示。它接收一组索引并将其映射为对应的嵌入向量Embedding 层常用于自然语言处理中的词向量表示,或者用于处理离散特征的深度学习模型中。

主要功能

Embedding 层的作用是将每个离散的输入索引映射到一个固定大小的实数向量空间中。它的操作与查找表类似,每个输入索引都会返回一个与其对应的向量。这个向量可以在模型训练时更新,逐步学习出对输入特征的低维稠密表示。

参数介绍

torch.nn.Embedding(num_embeddings, embedding_dim, padding_idx=None, max_norm=None, norm_type=2.0, scale_grad_by_freq=False, sparse=False)
  • num_embeddings: 嵌入矩阵中嵌入向量的总数,通常等于输入的词汇量或类别数量。例如,如果你有 1000 个不同的单词,则 num_embeddings 应设为 1000。

  • embedding_dim: 每个嵌入向量的维度。例如,你希望每个单词被表示成 50 维的向量,则设置 embedding_dim=50

  • padding_idx

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值