数学函数及逻辑函数
数学函数
向量化和广播
有了向量化,代码无需使用显式循环(这些循环实际上不能省略,只不过是在内部实现,被代码中的其他结构代替)
广播机制:描述了numpy如何在算术运算期间处理具有不同形状的数组,让较小的数组在较大的数组上“广播”,以便他们具有兼容的形状,兼容条件:两个数组的每一维等长,或其中一个数组为一维,那么广播机制就适用。
广播规则:
- 如果两个数组的维度数dim不相同,那么小维度数组的形状将会在左边补1。
- 如果shape维度不匹配,但是有维度是1,那么可以扩展维度是1的维度匹配另一个数组;
- 如果shape维度不匹配,但是没有任何一个维度是1,则匹配引发错误;
x = np.arange(4).reshape(4, 1)
y = np.ones(5)
print(x.shape) # (4, 1)
print(y.shape) # (5,)
print((x + y).shape) # (4, 5)
print(x + y)
# [[1. 1. 1. 1. 1.]
# [2. 2. 2. 2. 2.]
# [3. 3. 3. 3. 3.]
# [4. 4. 4. 4. 4.]]
x = np.array([0.0, 10.0, 20.0, 30.0])
y = np.array([1.0, 2.0, 3.0])
z = x[:, np.newaxis] + y
print(z)
# [[ 1. 2. 3.]
# [11. 12. 13.]
# [21. 22. 23.]
# [31. 32. 33.]]
数学函数
算数运算
numpy.add
numpy.subtract
numpy.multiply
numpy.divide
numpy.floor_divide
numpy,power
- numpy.add(x1, x2, *args, **kwargs) Add arguments element-wise.
numpy.subtract(x1, x2, *args, **kwargs) Subtract arguments element-wise.
numpy.multiply(x1, x2, *args, **kwargs) Multiply arguments element-wise.
numpy.divide(x1, x2, *args, **kwargs) Returns a true division of the inputs, element-wise.
numpy.floor_divide(x1, x2, *args, **kwargs) Return the largest integer smaller or equal to the division of the inputs.
numpy.power(x1, x2, *args, *kwargs) First array elements raised to powers from second array, element-wise.
在 numpy 中对以上函数进行了运算符的重载,且运算符为 元素级。也就是说,它们只用于位置相同的元素之间,所得到的运算结果组成一个新的数组。
numpy.sqrt(x, *args, **kwargs)
Return the non-negative square-root of an array, element-wise.numpy.square(x, *args, **kwargs)
Return the element-wise square of the input
x = np.arange(1, 5)
print(x) # [1 2 3 4]
y = np.sqrt(x)
print(y)
# [1. 1.41421356 1.73205081 2. ]
print(np.power(x, 0.5))
# [1. 1.41421356 1.73205081 2. ]
y = np.square(x)
print(y)
# [ 1 4 9 16]
print(np.power(x, 2))
# [ 1 4 9 16]
三角函数
numpy.sin
numpy.cos
numpy.tan
numpy.arcsin
numpy.arccos
numpy.arctan
*numpy.sin(x, *args, **kwargs) Trigonometric sine, element-wise.
numpy.cos(x, *args, **kwargs) Cosine element-wise.
numpy.tan(x, *args, **kwargs) Compute tangent element-wise.
numpy.arcsin(x, *args, **kwargs) Inverse sine, element-wise.
numpy.arccos(x, *args, **kwargs) Trigonometric inverse cosine, element-wise.
numpy.arctan(x, *args, *kwargs) Trigonometric inverse tangent, element-wise.
通用函数(universal function)通常叫作ufunc,它对数组中的各个元素逐一进行操作。这表明,通用函数分别处理输入数组的每个元素,生成的结果组成一个新的输出数组。输出数组的大小跟输入数组相同。
三角函数等很多数学运算符合通用函数的定义,例如,计算平方根的sqrt()函数、用来取对数的log()函数和求正弦值的sin()函数。
x = np.linspace(start=0, stop=np.pi / 2, num=10)
print(x)
# [0. 0.17453293 0.34906585 0.52359878 0.6981317 0.87266463
# 1.04719755 1.22173048 1.3962634 1.57079633]
y = np.sin(x)
print(y)
# [0. 0.17364818 0.34202014 0.5 0.64278761 0.76604444
# 0.8660254 0.93969262 0.98480775 1. ]
z = np.arcsin(y)
print(z)
# [0. 0.17453293 0.34906585 0.52359878 0.6981317 0.87266463
# 1.04719755 1.22173048 1.3962634 1.57079633]
y = np.cos(x)
print(y)
# [1.00000000e+00 9.84807753e-01 9.39692621e-01 8.66025404e-01
# 7.66044443e-01 6.42787610e-01 5.00000000e-01 3.42020143e-01
# 1.73648178e-01 6.12323400e-17]
z = np.arccos(y)
print(z)
# [0. 0.17453293 0.34906585 0.52359878 0.6981317 0.87266463
# 1.04719755 1.22173048 1.3962634 1.57079633]
y = np.tan(x)
print(y)
# [0.00000000e+00 1.76326981e-01 3.63970234e-01 5.77350269e-01
# 8.39099631e-01 1.19175359e+00 1.73205081e+00 2.74747742e+00
# 5.67128182e+00 1.63312394e+16]
z = np.arctan(y)
print(z)
# [0. 0.17453293 0.34906585 0.52359878 0.6981317 0.87266463
# 1.04719755 1.22173048 1.3962634 1.57079633]
指数和对数
numpy.exp
numpy.log
numpy.exp2
numpy.log2
numpy.log10
*numpy.exp(x, *args, **kwargs) Calculate the exponential of all elements in the input array.
numpy.log(x, *args, **kwargs) Natural logarithm, element-wise.
numpy.exp2(x, *args, kwargs) Calculate 2p for all p in the input array.
numpy.log2(x, *args, **kwargs) Base-2 logarithm of x.
numpy.log10(x, *args, *kwargs) Return the base 10 logarithm of the input array, element-wise
加法函数,乘法函数
numpy.sum(a[, axis=None, dtype=None, out=None, …])
通过不同的 axis,numpy 会沿着不同的方向进行操作:如果不设置,那么对所有的元素操作;如果axis=0,则沿着纵轴进行操作;axis=1,则沿着横轴进行操作。但这只是简单的二位数组,如果是多维的呢?可以总结为一句话:设axis=i,则 numpy 沿着第i个下标变化的方向进行操作。numpy.cumsum(a, axis=None, dtype=None, out=None)
聚合函数 是指对一组值(比如一个数组)进行操作,返回一个单一值作为结果的函数。因而,求数组所有元素之和的函数就是聚合函数。ndarray类实现了多个这样的函数。
x = np.array([[11, 12, 13, 14, 15],
[16, 17, 18, 19, 20],
[21, 22, 23, 24, 25],
[26, 27, 28, 29, 30],
[31, 32, 33, 34, 35]])
y = np.cumsum(x)
print(y)
# [ 11 23 36 50 65 81 98 116 135 155 176 198 221 245 270 296 323 351
# 380 410 441 473 506 540 575]
y = np.cumsum(x, axis=0)
print(y)
# [[ 11 12 13 14 15]
# [ 27 29 31 33 35]
# [ 48 51 54 57 60]
# [ 74 78 82 86 90]
# [105 110 115 120 125]]
y = np.cumsum(x, axis=1)
print(y)
# [[ 11 23 36 50 65]
# [ 16 33 51 70 90]
# [ 21 43 66 90 115]
# [ 26 53 81 110 140]
# [ 31 63 96 130 165]]
numpy.prod(a[, axis=None, dtype=None, out=None, …])
累积numpy.cumprod(a, axis=None, dtype=None, out=None)
累乘
x = np.array([[11, 12, 13, 14, 15],
[16, 17, 18, 19, 20],
[21, 22, 23, 24, 25],
[26, 27, 28, 29, 30],
[31, 32, 33, 34, 35]])
y = np.prod(x)
print(y) # 788529152
y = np.prod(x, axis=0)
print(y)
# [2978976 3877632 4972968 6294624 7875000]
y = np.prod(x, axis=1)
print(y)
# [ 360360 1860480 6375600 17100720 38955840]
x = np.array([[11, 12, 13, 14, 15],
[16, 17, 18, 19, 20],
[21, 22, 23, 24, 25],
[26, 27, 28, 29, 30],
[31, 32, 33, 34, 35]])
y = np.cumprod(x)
print(y)
# [ 11 132 1716 24024 360360 5765760
# 98017920 1764322560 -837609728 427674624 391232512 17180672
# 395155456 893796352 870072320 1147043840 905412608 -418250752
# 755630080 1194065920 -1638662144 -897581056 444596224 -2063597568
# 788529152]
y = np.cumprod(x, axis=0)
print(y)
# [[ 11 12 13 14 15]
# [ 176 204 234 266 300]
# [ 3696 4488 5382 6384 7500]
# [ 96096 121176 150696 185136 225000]
# [2978976 3877632 4972968 6294624 7875000]]
y = np.cumprod(x, axis=1)
print(y)
# [[ 11 132 1716 24024 360360]
# [ 16 272 4896 93024 1860480]
# [ 21 462 10626 255024 6375600]
# [ 26 702 19656 570024 17100720]
# [ 31 992 32736 1113024 38955840]]
numpy.diff(a, n=1, axis=-1, prepend=np._NoValue, append=np._NoValue)
差值- a:输入矩阵
n:可选,代表要执行几次差值
axis:默认是最后一个
A = np.arange(2, 14).reshape((3, 4))
A[1, 1] = 8
print(A)
# [[ 2 3 4 5]
# [ 6 8 8 9]
# [10 11 12 13]]
print(np.diff(A))
# [[1 1 1]
# [2 0 1]
# [1 1 1]]
print(np.diff(A, axis=0))
# [[4 5 4 4]
# [4 3 4 4]]
四舍五入
numpy.around(a, decimals=0, out=None)
舍入
x = np.random.rand(3, 3) * 10
print(x)
# [[6.59144457 3.78566113 8.15321227]
# [1.68241475 3.78753332 7.68886328]
# [2.84255822 9.58106727 7.86678037]]
y = np.around(x)
print(y)
# [[ 7. 4. 8.]
# [ 2. 4. 8.]
# [ 3. 10. 8.]]
y = np.around(x, decimals=2)
print(y)
# [[6.59 3.79 8.15]
# [1.68 3.79 7.69]
# [2.84 9.58 7.87]]
numpy.ceil(x, *args, **kwargs)
上限numpy.floor(x, *args, **kwargs)
下限
x = np.random.rand(3, 3) * 10
print(x)
# [[0.67847795 1.33073923 4.53920122]
# [7.55724676 5.88854047 2.65502046]
# [8.67640444 8.80110812 5.97528726]]
y = np.ceil(x)
print(y)
# [[1. 2. 5.]
# [8. 6. 3.]
# [9. 9. 6.]]
y = np.floor(x)
print(y)
# [[0. 1. 4.]
# [7. 5. 2.]
# [8. 8. 5.]]
杂项
numpy.clip(a, a_min, a_max, out=None, **kwargs)
裁剪
x = np.array([[11, 12, 13, 14, 15],
[16, 17, 18, 19, 20],
[21, 22, 23, 24, 25],
[26, 27, 28, 29, 30],
[31, 32, 33, 34, 35]])
y = np.clip(x, a_min=20, a_max=30)
print(y)
# [[20 20 20 20 20]
# [20 20 20 20 20]
# [21 22 23 24 25]
# [26 27 28 29 30]
# [30 30 30 30 30]]
numpy.absolute(x, *args, **kwargs)
绝对值numpy.abs(x, *args, **kwargs)
x = np.arange(-5, 5)
print(x)
# [-5 -4 -3 -2 -1 0 1 2 3 4]
y = np.abs(x)
print(y)
# [5 4 3 2 1 0 1 2 3 4]
y = np.absolute(x)
print(y)
# [5 4 3 2 1 0 1 2 3 4]
numpy.sign(x, *args, **kwargs)
返回数字符号的逐元素指示
x = np.arange(-5, 5)
print(x)
#[-5 -4 -3 -2 -1 0 1 2 3 4]
print(np.sign(x))
#[-1 -1 -1 -1 -1 0 1 1 1 1]
逻辑函数
真值测试
numpy.all(a, axis=None, out=None, keepdims=np._NoValue)
numpy.any(a, axis=None, out=None, keepdims=np._NoValue)
a = np.array([0, 4, 5])
b = np.copy(a)
print(np.all(a == b)) # True
print(np.any(a == b)) # True
b[0] = 1
print(np.all(a == b)) # False
print(np.any(a == b)) # True
print(np.all([1.0, np.nan])) # True
print(np.any([1.0, np.nan])) # True
a = np.eye(3)
print(np.all(a, axis=0)) # [False False False]
print(np.any(a, axis=0)) # [ True True True]
numpy.isnan(x, *args, **kwargs)
数组内容
a=np.array([1,2,np.nan])
print(np.isnan(a))
#[False False True]
numpy.logical_not
numpy.logical_and
numpy.logical_or
numpy.logical_xor
- numpy.logical_not(x, *args, **kwargs)Compute the truth value of NOT x element-wise.
numpy.logical_and(x1, x2, *args, **kwargs) Compute the truth value of x1 AND x2 element-wise.
numpy.logical_or(x1, x2, *args, **kwargs)Compute the truth value of x1 OR x2 element-wise.
numpy.logical_xor(x1, x2, *args, **kwargs)Compute the truth value of x1 XOR x2, element-wise. numpy.greater
numpy.greater_equal
numpy.equal
numpy.not_equal
numpy.less
numpy.less_equal
返回true,false的数组
numpy.greater(x1, x2, *args, **kwargs) Return the truth value of (x1 > x2) element-wise.
numpy.greater_equal(x1, x2, *args, **kwargs) Return the truth value of (x1 >= x2) element-wise.
numpy.equal(x1, x2, *args, **kwargs) Return (x1 == x2) element-wise.
numpy.not_equal(x1, x2, *args, **kwargs) Return (x1 != x2) element-wise.
numpy.less(x1, x2, *args, **kwargs) Return the truth value of (x1 < x2) element-wise.
numpy.less_equal(x1, x2, *args, **kwargs) Return the truth value of (x1 =< x2) element-wise.numpy.isclose(a, b, rtol=1.e-5, atol=1.e-8, equal_nan=False)
numpy.allclose(a, b, rtol=1.e-5, atol=1.e-8, equal_nan=False)
判断是否为True的计算依据:
np.absolute(a - b) <= (atol + rtol * absolute(b))
- atol:float,绝对公差。
- rtol:float,相对公差。
x = np.isclose([1e10, 1e-7], [1.00001e10, 1e-8])
print(x) # [ True False]
x = np.allclose([1e10, 1e-7], [1.00001e10, 1e-8])
print(x) # False
x = np.isclose([1e10, 1e-8], [1.00001e10, 1e-9])
print(x) # [ True True]
x = np.allclose([1e10, 1e-8], [1.00001e10, 1e-9])
print(x) # True
x = np.isclose([1e10, 1e-8], [1.0001e10, 1e-9])
print(x) # [False True]
x = np.allclose([1e10, 1e-8], [1.0001e10, 1e-9])
print(x) # False
x = np.isclose([1.0, np.nan], [1.0, np.nan])
print(x) # [ True False]
x = np.allclose([1.0, np.nan], [1.0, np.nan])
print(x) # False
x = np.isclose([1.0, np.nan], [1.0, np.nan], equal_nan=True)
print(x) # [ True True]
x = np.allclose([1.0, np.nan], [1.0, np.nan], equal_nan=True)
print(x) # True