一、代码
import operator
import numpy as np
from os import listdir
def classify0(inX, dataSet, labels, k):
"""
函数说明:kNN算法,分类器
Parameters:
inX - 用于分类的数据(测试集)(1*m向量)
dataSet - 用于训练的数据(训练集)(n*m向量array)
labels - 分类标准(n*1向量array)
k - kNN算法参数,选择距离最小的k个点
Returns:
sortedClassCount[0][0] - 分类结果
"""
dataSetSize = dataSet.shape[0]
diffMat = np.tile(inX, (dataSetSize, 1)) - dataSet
sqDiffMat = diffMat ** 2
sqDistances = sqDiffMat.sum(axis=1)
distances = sqDistances ** 0.5
sortedDistIndicies = distances.argsort()
classCount = {}
for i in range(k):
voteIlabel = labels[sortedDistIndicies[i]]
classCount[voteIlabel] = classCount.get(voteIlabel, 0) + 1
sortedClassCount = sorted(classCount.items(), key=operator.itemgetter(1), reverse=True)
return sortedClassCount[0][0]
def img2vector(filename):
"""
函数说明:将32*32的二进制图像转换为1*1024向量
Parameters:
filename - 文件名
Returns:
returnVect - 返回二进制图像的1*1024向量
"""
returnVect = np.zeros((1, 1024))
with open(filename) as fr:
for i in range(32):
lineStr = fr.readline()
for j in range(32):
returnVect[0, 32 * i + j] = int(lineStr[j])
return returnVect
def handwritingClassTest():
"""
函数说明:手写数字分类测试
Parameters:
None
Returns:
None
"""
hwLabels = []
trainingFileList = listdir('trainingDigits')
m = len(trainingFileList)
trainingMat = np.zeros((m, 1024))
for i in range(m):
fileNameStr = trainingFileList[i]
classNumStr = int(fileNameStr.split('_')[0])
hwLabels.append(classNumStr)
trainingMat[i,:] = img2vector('trainingDigits/%s' % fileNameStr)
testFileList = listdir('testDigits')
errorCount = 0.0
mTest = len(testFileList)
for i in range(mTest):
fileNameStr = testFileList[i]
classNumStr = int(fileNameStr.split('_')[0])
vectorUnderTest = img2vector('testDigits/%s' % fileNameStr)
classifierResult = classify0(vectorUnderTest, trainingMat, hwLabels, 3)
print("分类返回结果为%d\t真实结果为%d" % (classifierResult, classNumStr))
if classifierResult != classNumStr:
errorCount += 1.0
print("总共错了%d个数据\n错误率为%f%%" % (errorCount, errorCount / mTest * 100))
if __name__ == '__main__':
textVect = img2vector("testDigits/0_0.txt")
print(textVect[0][:32])
handwritingClassTest()
二、运行结果


三、资源
mnist_digits