127. Word Ladder
这是一道广度优先遍历的题目
Given two words (beginWord and endWord), and a dictionary's word list, find the length of shortest transformation sequence from beginWord to endWord, such that:
- Only one letter can be changed at a time.
- Each transformed word must exist in the word list. Note that beginWord is not a transformed word.
For example,
Given:
beginWord = "hit"
endWord = "cog"
wordList = ["hot","dot","dog","lot","log","cog"]
As one shortest transformation is "hit" -> "hot" -> "dot" -> "dog" -> "cog"
,
return its length 5
.
Note:
- Return 0 if there is no such transformation sequence.
- All words have the same length.
- All words contain only lowercase alphabetic characters.
- You may assume no duplicates in the word list.
- You may assume beginWord and endWord are non-empty and are not the same.
public class Solution {
public int ladderLength(String beginWord, String endWord, List<String> wordList) {
Set<String> set=new HashSet<>();
List<String> list=new ArrayList<>();
set.add(beginWord);
list.add(beginWord);
if(beginWord.length()!=endWord.length())return 0;
for(int i=0;i<wordList.size();i++){
if(beginWord.length()==wordList.get(i).length()&&!set.contains(wordList.get(i))){
set.add(wordList.get(i));
list.add(wordList.get(i));
}
}
int gcount=0;
boolean mnark=false;
Stack<String> stack=new Stack<>();
Stack<String> mstack=new Stack<>();
set=new HashSet<>();
stack.push(beginWord);
set.add(beginWord);
list.remove(0);
gcount++;
while(!stack.empty()){
String str=stack.pop();
set.add(str);
for(int i=0;i<list.size();i++){
String temp=list.get(i);
int count=0;
for(int j=0;j<temp.length();j++){
if(temp.charAt(j)!=str.charAt(j))count++;
}
if(count==1){
mstack.push(temp);
list.remove(i);
i--;
}
}
if(set.contains(endWord))return gcount;
if(stack.empty()&&!mstack.empty()){
stack=mstack;
mstack=new Stack<>();
gcount++;
}
}
if(!mnark)return 0;
return gcount;
}
}