poj2955

本文探讨了如何寻找给定括号序列中最长的有效括号子序列的问题,并提供了一种使用动态规划解决此问题的方法。文章包含了一个详细的C++实现案例。
Brackets
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 4686 Accepted: 2484

Description

We give the following inductive definition of a “regular brackets” sequence:

  • the empty sequence is a regular brackets sequence,
  • if s is a regular brackets sequence, then (s) and [s] are regular brackets sequences, and
  • if a and b are regular brackets sequences, then ab is a regular brackets sequence.
  • no other sequence is a regular brackets sequence

For instance, all of the following character sequences are regular brackets sequences:

(), [], (()), ()[], ()[()]

while the following character sequences are not:

(, ], )(, ([)], ([(]

Given a brackets sequence of characters a1a2 … an, your goal is to find the length of the longest regular brackets sequence that is a subsequence of s. That is, you wish to find the largest m such that for indices i1i2, …, im where 1 ≤ i1 < i2 < … < im ≤ nai1ai2 … aim is a regular brackets sequence.

Given the initial sequence ([([]])], the longest regular brackets subsequence is [([])].

Input

The input test file will contain multiple test cases. Each input test case consists of a single line containing only the characters ()[, and ]; each input test will have length between 1 and 100, inclusive. The end-of-file is marked by a line containing the word “end” and should not be processed.

Output

For each input case, the program should print the length of the longest possible regular brackets subsequence on a single line.

Sample Input

((()))
()()()
([]])
)[)(
([][][)
end

Sample Output

6
6
4
0
6


这道题用dp可以解决,dp方程可以从代码中获得。

以ac的代码:

#include<stdio.h>
#include<string.h>
#include<iostream>
using namespace std;
#define N 110

char ch[N];
int dp[N][N];

int main(){
    int length;
    while(scanf("%s",ch)!=EOF&&ch[0]!='e'){
        length=strlen(ch);
        memset(dp,0,sizeof(dp));
        for(int i=2;i<=length;i++){
            for(int j=0;j<=length-i;j++){
                dp[j][j+i-1]=dp[j][j+i-2];

                if(ch[j+i-1]=='('||ch[j+i-1]=='['){
                    continue;
                }
                for(int k=j;k<j+i-1;k++){
                    if((ch[k]=='('&&ch[j+i-1]==')')||(ch[k]=='['&&ch[j+i-1]==']')){
                        if(k!=i+j-2&&k!=j){
                            dp[j][j+i-1]=max(dp[j][j+i-1],dp[j][k-1]+dp[k+1][i+j-2]+2);
                        }
                        else if(k!=j){
                            dp[j][j+i-1]=max(dp[j][j+i-1],dp[j][k-1]+2);
                        }
                        else if(k!=i+j-2){
                            dp[j][j+i-1]=max(dp[j][j+i-1],dp[j+1][j+i-2]+2);
                        }
                        else{
                            dp[j][j+i-1]=max(dp[j][j+i-1],2);
                        }
                    }
                }
            }
        }

        printf("%d\n",dp[0][length-1]);
    }

    return 0;
}
参考链接:

http://www.cnblogs.com/ziyi--caolu/archive/2013/08/04/3236035.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值