解析:
设dp[i]为[0,i]层内的最大获利,最高层为bound。
先将每一个广告按底层位置排序,然后按次序,当考虑第i个广告(l底层位置,r顶层位置,v获利)时,
则有dp[j] = max(dp[j],dp[l-1]+v) ,r<=j<=bound
用线段树维护序列。
[code]:
#include<cstdio>
#include<cstring>
#include<algorithm>
#define lson l, mid ,rt<<1
#define rson mid+1,r,rt<<1|1
using namespace std;
typedef long long LL;
const int maxn = 30005;
const int bound = 2e5+5;
struct Node{
int l,r,v;
bool operator < (const Node &z)const{
return l!=z.l?l<z.l:r<z.r;
}
}A[maxn];
int n,arr[bound<<2],lazy[bound<<2];
void push_up(int rt){
arr[rt] = max(arr[rt<<1],arr[rt<<1|1]);
}
void push_down(int l,int r,int rt){
if(l == r||lazy[rt]==0) return;
lazy[rt<<1] = max(lazy[rt<<1],lazy[rt]);
lazy[rt<<1|1] = max(lazy[rt<<1|1],lazy[rt]);
arr[rt<<1] = max(arr[rt<<1],lazy[rt]);
arr[rt<<1|1] = max(arr[rt<<1|1],lazy[rt]);
lazy[rt] = 0;
}
void build(int l,int r,int rt){
arr[rt] = lazy[rt] = 0;
if(l == r) return;
int mid = (l+r)>>1;
build(lson);build(rson);
}
void update(int a,int b,int x,int l,int r,int rt){
push_down(l,r,rt);
if(a<=l&&r<=b){
arr[rt] = max(arr[rt],x);
lazy[rt] = x;
return;
}
if(l>b||r<a) return;
int mid = (l+r)>>1;
update(a,b,x,lson);update(a,b,x,rson);
push_up(rt);
}
int query(int k,int l,int r,int rt){
push_down(l,r,rt);
if(l == r) return arr[rt];
int mid = (l+r)>>1;
if(k <= mid) return query(k,lson);
else query(k,rson);
}
int main(){
int i,j,cas,T;
scanf("%d",&cas);
for(T = 1;T <= cas;T++){
scanf("%d",&n);
for(i = 0;i < n;i++){
scanf("%d%d%d",&A[i].l,&A[i].r,&A[i].v);
A[i].r = A[i].l+A[i].r-1;
}
sort(A,A+n);
build(0,bound,1);
int tmp;
for(i = 0;i < n;i++){
if(A[i].l>0) tmp = query(A[i].l-1,0,bound,1);
else tmp = 0;
update(A[i].r,bound,tmp+A[i].v,0,bound,1);
}
printf("Case %d: %d\n",T,arr[1]);
}
return 0;
}