tensorflow实现线性方程的参数调整

本文通过TensorFlow实现了线性方程的参数调整,实验结果显示Weight参数接近目标值0.1,biases参数接近目标值0.3。
import tensorflow as tf
import numpy as np
#create data
x_data=np.random.rand(100).astype(np.float32)
y_data=x_data*0.1+0.3 #目标结果

#create tensorflow structure start
Weights=tf.Variable(tf.random_uniform([1],-1.0,1.0))
biases=tf.Variable(tf.zeros([1])) # 权重和偏值从初始值开始不断学习,靠近目标值
y=Weights*x_data+biases
loss=tf.reduce_mean(tf.square(y-y_data))# 均方差
optimizer=tf.train.GradientDescentOptimizer(0.5)
train=optimizer.minimize(loss)

init=tf.initialize_all_variables()
# create tensorflow structure end

sess=tf.Session()
sess.run(init) #指向处理的地方

for step in range(201):
    sess.run(train)
    if step%20==0:
        print(step,sess.run(Weights),sess.run(biases))

实验结果:
这里写图片描述

如上所示最终实验结果表明Weight接近目标值0.1,biases接近目标值0.3

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值