matlab train函数

本文详细介绍如何使用MATLAB进行神经网络的训练,包括静态和动态网络的训练过程,并介绍了如何利用并行计算加速训练,以及如何通过设置检查点文件确保训练的安全性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

network/train
 train Train a neural network.
 
   [NET,TR] = train(NET,X,T) takes a network NET, input data X
   and target data T and returns the network after training it, and a
   a training record TR.
 
   [NET,TR] = train(NET,X) takes only input data, in cases where
   the network's training function is unsupervised (i.e. does not require
   target data).
 
   [NET,TR] = train(NET,X,T,Xi,Ai,EW) takes additional optional
   arguments suitable for training dynamic networks and training with
   error weights.  Xi and Ai are the initial input and layer delays states
   respectively and EW defines error weights used to indicate
   the relative importance of each target value.
 
   train calls the network training function NET.trainFcn with the
   parameters NET.trainParam to perform training.  Training functions
   may also be called directly.
 
   train arguments can have two formats: matrices, for static
   problems and networks with single inputs and outputs, and cell arrays
   for multiple timesteps and networks with multiple inputs and outputs.
 
   The matrix format is as follows:
     X  - RxQ matrix
     Y  - UxQ matrix.
   Where:
     Q  = number of samples
     R  = number of elements in the network's input
     U  = number of elements in the network's output
 
   The cell array format is most general:
     X  - NixTS cell array, each element X{i,ts} is an RixQ matrix.
     Xi - NixID cell array, each element Xi{i,k} is an RixQ matrix.
     Ai - NlxLD cell array, each element Ai{i,k} is an SixQ matrix.
     Y  - NOxTS cell array, each element Y{i,ts} is a UixQ matrix.
     Xf - NixID cell array, each element Xf{i,k} is an RixQ matrix.
     Af - NlxLD cell array, each element Af{i,k} is an SixQ matrix.
   Where:
     TS = number of time steps
     Ni = NET.numInputs
     Nl = NET.numLayers,
     No = NET.numOutputs
     ID = NET.numInputDelays
     LD = NET.numLayerDelays
     Ri = NET.inputs{i}.size
     Si = NET.layers{i}.size
     Ui = NET.outputs{i}.size
 
   The error weights EW can be 1, indicating all targets are equally
   important.  It can also be either a 1xQ vector defining relative sample
   importances, a 1xTS cell array of scalar values defining relative
   timestep importances, an Nox1 cell array of scalar values defining
   relative network output importances, or in general an NoxTS cell array
   of NixQ matrices (the same size as T) defining every target element's
   relative importance.
 
   The training record TR is a structure whose fields depend on the network
   training function (net.NET.trainFcn). It may include fields such as:
     *  Training, data division, and performance functions and parameters
     * Data division indices for training, validation and test sets
     * Data division masks for training validation and test sets
     * Number of epochs (num_epochs) and the best epoch (best_epoch).
     * A list of training state names (states).
     * Fields for each state name recording its value throughout training
     * Performances of the best network (best_perf, best_vperf, best_tperf)
 
   Here a static feedforward network is created, trained on some data, then
   simulated using SIM and network notation.
 
     [x,t] = simplefit_dataset;
     net = feedforwardnet(10);
     net = train(net,x,t);
     y1 = sim(net,x)
     y2 = net(x)
 
   Here a dynamic NARX network is created, trained, and simulated on
   time series data.
 
    [X,T] = simplenarx_dataset;
    net = narxnet(1:2,1:2,10);
    view(net)
    [Xs,Xi,Ai,Ts] = preparets(net,X,{},T);
    net = train(net,Xs,Ts,Xi,Ai);
    Y = net(Xs,Xi,Ai)
 
   <strong>Training with Parallel Computing</strong>
 
   Parallel Computing Toolbox allows Neural Network Toolbox to train
   networks faster and on larger datasets than can fit on one PC.
 
   (Parallel and GPU training are currently supported for backpropagation
   training only, i.e. not Self-Organizing Maps.
 
   Here training automatically happens across MATLAB parallel workers.
 
     parpool
     [X,T] = vinyl_dataset;
     net = feedforwardnet(140,'trainscg');
     net = train(net,X,T,'UseParallel','yes');
     Y = net(X,'UseParallel','yes');
 
   Use Composite values to distribute the data manually, and get back
   the results as a Composite value.  If the data is loaded as it is
   distributed then while each piece of the dataset must fit in RAM, the
   entire dataset is only limited by the number of workers RAM.  Use
   the function configure to prepare a network for training
   with parallel data.
 
     net = feedforwardnet(140,'trainscg');
     net = configure(net,X,T);
     Xc = Composite;
     Tc = Composite;
     for i=1:numel(Xc)
       Xc{i} = X+rand(size(X))*0.1; % (Use real data instead
       Tc{i} = T+rand(size(T))*0.1; % instead of random data)
     end
     net = train(net,Xc,Tc);
     Yc = net(Xc);
     Y = cat(2,Yc{:});
 
   Networks can be trained using the current GPU device, if it is
   supported by the Parallel Computing Toolbox. This is efficient for
   large static problems or dynamic problems with many series.
 
     net = feedforwardnet(140,'trainscg');
     net = train(net,X,T,'UseGPU','yes');
     Y = net(X,'UseGPU','yes');
 
   If a network is static (no delays) and has a single input and output,
   then training can be done with data already converted to gpuArray form,
   if the network is configured with MATLAB data first.
 
     net = feedforwardnet(140,'trainscg');
     net = configure(net,X,T);
     Xgpu = gpuArray(X);
     Tgpu = gpuArray(T);
     net = train(net,Xgpu,Tgpu);
     Ygpu = net(Xgpu);
     Y = gather(Ygpu);
 
   To run in parallel, with workers associated with unique GPUs taking
   advantage of that hardware, while the rest of the workers use CPUs:
 
     net = feedforwardnet(140,'trainscg');
     net = train(net,X,T,'UseParallel','yes','UseGPU','yes');
     Y = net(X,'UseParallel','yes','UseGPU','yes');
 
   Only using workers with unique GPUs may result in higher speed, as CPU
   workers may not keep up.
 
     net = feedforwardnet(140,'trainscg');
     net = train(net,X,T,'UseParallel','yes','UseGPU','only');
     Y = net(X,'UseParallel','yes','UseGPU','only');
 
   Use the 'ShowResources' option to verify the computing resources used.
 
     net = train(...,'ShowResources','yes');
 
   <strong>Training Safely with Checkpoint Files</strong>
 
   The optional parameter CheckpointFile allows you to specify a file to periodically save
   intermediate values of the neural network and training record during training.  This protects
   training results from power failures, computer lock ups, Ctrl-C, or any other event that
   halts the training process before train returns normally.
 
   CheckpointFile can be set to the empty string to disable checkpoint saves (the default value),
   to a filename to save to the current working directory, or a file path.
 
   The optional parameter CheckpointDelay limits how often saves happen.  It has a default
   value of 60 which means that checkpoint saves will not happen more than once a minute.
   Limiting the frequency of checkpoints keeps the amount of time saving checkpoints low
   compared to the time spent in calculations, using time efficiently.  Set CheckpointDelay
   to 0 if you want checkpoint saves to occur every epoch.
 
   For example, here a network is trained with checkpoints saved at a rate no greater than
   once each two minutes.
 
     [x,t] = vinyl_dataset;
     net = fitnet([60 30]);
     net = train(net,x,t,'CheckpointFile','MyCheckpoint','CheckpointDelay',120);
 
   A computer failure happens, the latest network can be recovered and used to continue
   training from the point of failure. The checkpoint file includes a structure variable
   'checkpoint' which includes the network, training record, filename, time and number.
 
     [x,t] = vinyl_dataset;
     load MyCheckpoint
     net = checkpoint.net;
     net = train(net,x,t,'CheckpointFile','MyCheckpoint');
 
   Another use for this feature is to be able to stop a parallel training session (using the
   UseParallel parameter described above) even though the Neural Network Training Tool
   is not available during parallel training.  Set a CheckpointFile, use Ctrl-C to stop
   training any time, then load your checkpoint file to get the network and training record.
<think>好的,我现在需要处理用户关于MATLABtrain函数的使用问题。首先,用户已经提供了几个相关的引用内容,我需要仔细分析这些引用,并结合用户之前的对话历史来构建一个全面且准确的回答。 首先,用户在上一次提问中已经询问了MATLAB的培训教程,我给出了结构化的学习路径和资源推荐,包括基础入门教程、专业领域训练和推荐资源。用户现在的问题是关于train函数的具体使用说明和示例,这属于神经网络和机器学习工具箱的一部分,因此需要深入相关的函数用法。 接下来,查看用户提供的引用: 引用[1]提到了train函数在并行计算中的应用,示例中使用了feedforwardnet网络,并启用了并行选项。引用[3]详细解释了train函数的语法、参数和返回值,适用于神经网络训练。引用[2]和[4]涉及SVM的训练函数svmtrain和fitcsvm,虽然用户现在的问题是关于train函数,但可能需要区分不同工具箱中的函数,避免混淆。 用户可能的需求是了解如何正确使用train函数来训练神经网络,以及可能的常见问题解决方法。需要明确train函数属于神经网络工具箱,而svmtrain属于分类学习工具箱,fitcsvm属于统计和机器学习工具箱,这些是不同的函数,尽管名称相似。 在回答时,应该首先明确train函数的适用范围,然后详细说明其参数、使用示例,以及常见问题,比如并行训练、输入数据格式、训练结果分析等。同时,需要参考用户提供的引用中的代码示例,确保示例正确并符合最佳实践。 还需要注意用户可能混淆不同train函数的情况,比如将神经网络的train与SVM的svmtrain或fitcsvm混淆,因此需要明确区分,避免用户误用。 在结构上,应该按照用户之前的问题回答的结构,保持清晰,分点说明,包括函数说明、参数详解、使用示例、常见问题等,并添加相关问题供用户进一步参考。 最后,确保所有数学表达式和代码块符合格式要求,使用正确的LaTeX语法,行内公式用$...$,独立公式用$$...$$,代码块用三个反引号包裹,并标明语言类型。 需要验证提供的引用中的代码是否正确,例如引用[1]中的并行训练示例是否正确启用了并行选项,引用[3]中的参数说明是否准确,是否有遗漏或错误。同时,检查是否有最新的MATLAB版本变化,确保提供的示例在当前版本中仍然有效。 总结回答的结构应该是: 1. 函数概述:说明train函数的作用和所属工具箱。 2. 语法说明:详细解释输入输出参数。 3. 使用示例:包括基本使用和进阶功能(如并行训练)。 4. 注意事项和常见问题:比如数据格式、并行配置、训练结果分析。 5. 相关函数对比:区分不同工具箱中的类似函数。 6. 相关问题:生成用户可能感兴趣的其他问题。 确保回答中引用了用户提供的引用内容,例如引用[1]和[3]中的示例和参数说明,并在适当的位置添加引用标识。同时,保持回答的中文,使用清晰易懂的语言,避免专业术语过于晦涩,必要时进行解释。</think>以下为MATLAB中`train`函数的详细使用说明及示例,结合神经网络工具箱实现: --- ### 一、函数概述 `train`函数是**神经网络工具箱**的核心训练函数,用于通过反向传播算法调整网络权重[^3]。支持前馈网络、循环网络等结构,可配置并行计算加速训练[^1]。 --- ### 二、函数语法 ```matlab [net, tr] = train(net, X, T, Xi, Ai, 'ParameterName', ParameterValue) ``` #### 输入参数说明: | 参数 | 格式 | 作用 | |------|------|------| | `net` | 网络对象 | 待训练的神经网络(如`feedforwardnet`创建) | | `X` | $R \times Q$矩阵 | 输入数据,$R$=特征维度,$Q$=样本数量 | | `T` | $S \times Q$矩阵 | 目标输出(监督学习必需) | | `Xi` | 延迟矩阵 | 初始化输入延迟状态(默认0) | | `Ai` | 延迟矩阵 | 初始化层延迟状态(默认0) | #### 关键配置参数: - `'useParallel','yes'` ➔ 启用多核并行训练[^1] - `'showResources','yes'` ➔ 显示硬件资源使用情况 - `'epochs',100` ➔ 设置最大训练迭代次数 --- ### 三、使用示例 #### 示例1:基础训练(前馈神经网络) ```matlab % 载入鸢尾花数据集(输入特征4维,输出类别3类) [X,T] = iris_dataset; % 创建含10个隐藏节点的前馈网络 net = feedforwardnet(10); % 执行训练(自动划分训练/验证集) [net, tr] = train(net, X, T); % 测试网络性能 Y = net(X); plotperform(tr) % 绘制训练误差曲线 ``` #### 示例2:并行训练加速 ```matlab [X,T] = vinyl_dataset; % 加载音频数据集 net = patternnet(20); % 创建模式识别网络 % 启用并行计算(需Parallel Computing Toolbox) net = train(net, X, T, 'useParallel','yes', 'showResources','yes'); % 查看训练结果 disp(['训练耗时: ', num2str(tr.time(end)), ' 秒']) ``` --- ### 四、注意事项 1. **数据标准化**:输入数据建议归一化至$[-1,1]$区间 ```matlab net.inputs{1}.processFcns = {'mapminmax'}; ``` 2. **训练中断恢复**:通过`tr`结构体可重启训练 ```matlab net.trainParam.epochs = 200; [net, tr] = train(net, X, T, 'useParallel','yes', 'initialState',tr); ``` 3. **可视化工具**:使用`nntraintool`打开交互式训练面板 --- ### 五、相关函数对比 | 函数名 | 所属工具箱 | 主要用途 | |--------------|--------------------------|--------------------------| | `train` | Neural Network Toolbox | 神经网络训练 | | `svmtrain` | Bioinformatics Toolbox | 支持向量机分类(旧版本) | | `fitcsvm` | Statistics and ML Toolbox| 新版SVM分类器[^4] | ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值