FZU Problem 1160 Common Subsequence

Problem 1160 Common Subsequence

Accept: 484 Submit: 1027 Time Limit: 1000 mSec Memory Limit : 32768 KB

img Problem Description

A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = <x1, x2, …, xm> another sequence Z = <z1, z2, …, zk> is a subsequence of X if there exists a strictly increasing sequence <i1, i2, …, ik> of indices of X such that for all j = 1,2,…,k, xij = zj. For example, Z = <a, b, f, c> is a subsequence of X = <a, b, c, f, b, c> with index sequence <1, 2, 4, 6>. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y.

img Input

The program input is from a text file. Each data set in the file contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct.

img Output

For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.

img Sample Input

abcfbc abfcab
programming contest
abcd mnp

img Sample Output

4

2

0

img Source

SEERC 2003

解决方案

LCS动态规划

理论:https://blog.youkuaiyun.com/someone_and_anyone/article/details/81044153

本题不要求输出LCS序列,故只要懂得LCS的状态转移方程即可

#include<iostream>
#include<algorithm>
using namespace std;
char s1[1005], s2[1005];
int l1, l2, dp[1005][1005];
int main() {
	while (~scanf("%s%s", s1 + 1, s2 + 1)) {
		l1 = strlen(s1 + 1);
		l2 = strlen(s2 + 1);
		for (int i = 0; i <= l2; i++)
			dp[0][i] = 0;
		for (int i = 0; i <= l1; i++)
			dp[i][0] = 0;
		for (int i = 1; i <= l1; i++)
			for (int j = 1; j <= l2; j++) {
				if (s1[i] == s2[j])
					dp[i][j] = dp[i - 1][j - 1] + 1;
				else
					dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
			}
		printf("%d\n", dp[l1][l2]);
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值