Common Subsequence 最大公共子序列问题

本文详细解析了最长公共子序列问题,介绍了该问题的基本概念、解决思路,并提供了一个具体的C语言实现示例。通过样例输入输出展示了如何求解两个字符串的最长公共子序列长度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Problem Description
A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = <x1, x2, ..., xm> another sequence Z = <z1, z2, ..., zk> is a subsequence of X if there exists a strictly increasing sequence <i1, i2, ..., ik> of indices of X such that for all j = 1,2,...,k, xij = zj. For example, Z = <a, b, f, c> is a subsequence of X = <a, b, c, f, b, c> with index sequence <1, 2, 4, 6>. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y.
The program input is from a text file. Each data set in the file contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct. For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.
 

 

Sample Input
abcfbc abfcab programming contest abcd mnp
 

 

Sample Output
4 2 0
 
 
 
 
关键点:要掌握问题的转化,关键点是要理解,假设序列 X={X1,X2...Xm}和Y={Y1,Y2,...Yn}的最长公共子序列为Z={Z1,Z2...Zk)
(1)若Xm = Yn 则 Zk=Xm=Yn ,且Zk-1 是Xm-1 和 Yn-1的最长公共子序列
(2)若Xm 不等于Yn,且Zk不等于Xm 则Z是Xm-1和Y的最长公共子序列
(3)若Xm不等于Yn,且Zk不等于Yn 则Z是X和Yn-1 的最长公共子序列
 

#include<stdio.h>
#include<string.h>
int c[500][500],lena,lenb;
int max(int a,int b){
if(a>=b)
return a;
else
return b;
}
int main(){
char a[500],b[500];
while(scanf("%s%s",a,b)==2){
lena = strlen(a);
lenb = strlen(b);
for(int i=0;i<lena;i++)
c[i][0]=0;
for(int j=0;j<lenb;j++)
c[0][j]=0;
for(int i=1;i<=lena;i++)
for(int j=1;j<=lenb;j++){
if(a[i-1]==b[j-1])//这里需要注意下,不能忘记字符a[0],b[0]的比较,所以在计算的过程中需要计算到lena
c[i][j]=c[i-1][j-1]+1;
else
c[i][j]=max(c[i-1][j],c[i][j-1]);
}
printf("%d\n",c[lena][lenb]);
}
return 0;
}

 
 

转载于:https://www.cnblogs.com/hoojjack/p/4014393.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值