赛题1-新闻文本分类-Task02-数据读取及初步分析
今天主要是代码向
import pandas as pd
train_set = pd.read_csv('./data/1/train_set.csv', sep='\t')
train_set.head()
train_set['text_len'] = train_set['text'].map(lambda x: len(x.split(' ')))
train_set['text_len'].describe()
train_set.head()
import matplotlib.pyplot as plt
_ = plt.hist(train_set['text_len'])
plt.xlabel('text_len')
plt.title("count")
_ = plt.hist(train_set['text_len'], range=(0, 5921), bins=200)
plt.xlabel('Text char count')
plt.title("Histogram of char count")

train_set['label'].value_counts().plot(kind='bar')
plt.title('News class count')
plt.xlabel("category")

from collections import Counter
all_lines = ' '.join(list(train_set['text']))
word_count = Counter(all_lines.split(" "))
word_count = sorted(word_count.items(), key=lambda d:d[1], reverse = True)
print(len(word_count))
print(word_count[0])
print(word_count[-1])
from collections import Counter
train_set['text_unique'] = train_set['text'].apply(lambda x: ' '.join(list(set(x.split(' ')))))
all_lines = ' '.join(list(train_set['text_unique']))
word_count = Counter(all_lines.split(" "))
word_count = sorted(word_count.items(), key=lambda d:int(d[1]), reverse = True)
print(word_count[0])
print(word_count[1])
print(word_count[2])
import re
train_set['sentence'] = train_set['text'].map(lambda x: len(re.split('3750|900|648', x)))
train_set['sentence'].describe()
train_set.groupby(['label'])
