字节流与字符流

----------- android培训、java培训、java学习型技术博客、期待与您交流! ------------

1、字节流



字节流主要是操作byte(字节)的类型数据:
字节输出流:OutputStream
字节输入流:InputStream


2、字符流


Java中的字符是Unicode编码,是双字节的,1个字符 等于 2个字节;
使用字节来处理字符文本就不太方便了,此时可以考虑使用字符流;
字符流主要是操作char的类型数据:
字符输出流:Writer
字符输入流:Reader


3、字节流和字符流的区别


a,在进行字符流操作的时候会使用到缓冲区(内存中),而字节流操作的时候是不会使用到缓冲区的。
b,在输出的时候,OutputStream类即使最后没有关闭内容也可以输出。但是如果是Writer的话,则如果不关闭,最后一条内容是无法输出的
c,字节流:程序 → 文件
 字符流:程序 → 缓冲区(内存中) → 文件
4,实例:
import java.io.FileInputStream;
import java.io.InputStream;
 
public class Demo4 {
public static void main(String[] args) throws Exception {
//第一步:创建源!
String filename = "6.4";
//第二步:创建管道!
InputStream ips = new FileInputStream(filename);
//第三步:操作!
byte []buff = new byte[1024];
int len;//定义缓冲区
while((len = ips.read(buff)) != -1){
System.out.println(new String(buff,0,buff.length));
System.out.println("==========================================");
}
ips.close();//第四步:关闭资源
}
}




//字符流读出来,这时候就不会出现乱码的情况,在进行文字操作的时候最好使用字符流!
import java.io.File;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.IOException;
import java.io.Reader;
 
public class Demo6 {
public static void main(String[] args) {
File src = new File("6.4");
read(src);
}
public static void read(File src){
Reader r = null;
try {
r = new FileReader(src);
} catch (FileNotFoundException e) {
e.printStackTrace();
}
char []c = new char[1024];
int len;
try {
while((len = r.read(c)) != -1){
System.out.println(new String(c,0,c.length));
}
} catch (IOException e) {
e.printStackTrace();
}
try {
r.close();
} catch (IOException e) {
e.printStackTrace();
}
}

}


----------- android培训、java培训、java学习型技术博客、期待与您交流! ------------

内容概要:本文深入探讨了金属氢化物(MH)储氢系统在燃料电池汽车中的应用,通过建立吸收/释放氢气的动态模型和热交换模型,结合实验测试分析了不同反应条件下的性能表现。研究表明,低温环境有利于氢气吸收,高温则促进氢气释放;提高氢气速和降低储氢材料体积分数能提升系统效率。论文还详细介绍了换热系统结构、动态性能数学模型、吸放氢特性仿真分析、热交换系统优化设计、系统控制策略优化以及工程验证误差分析。此外,通过三维动态建模、换热结构对比分析、系统级性能优化等手段,进一步验证了金属氢化物储氢系统的关键性能特征,并提出了具体的优化设计方案。 适用人群:从事氢能技术研发的科研人员、工程师及相关领域的研究生。 使用场景及目标:①为储氢罐热管理设计提供理论依据;②推动车载储氢技术的发展;③为金属氢化物储氢系统的工程应用提供量化依据;④优化储氢系统的操作参数和结构设计。 其他说明:该研究不仅通过建模仿真全面验证了论文实验结论,还提出了具体的操作参数优化建议,如吸氢阶段维持25-30°C,氢气速0.012g/s;放氢阶段快速升温至70-75°C,水速18-20g/min。同时,文章还强调了安全考虑,如最高工作压力限制在5bar以下,温度传感器冗余设计等。未来的研究方向包括多尺度建模、新型换热结构和智能控制等方面。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值