吉林大学单片机实验课实验五——重量测量

本文介绍了一个基于51单片机的数模转换和点阵液晶屏显示实验,通过代码实现对传感器数据的读取与显示。文章详细展示了初始化硬件、读取按键状态、刷新屏幕等过程,并解释了代码结构和运行逻辑。

  主要数模转换和点阵液晶屏显示屏,距离上次更新时间有点久,今天把所有的实验全部更新完,实话说啊,这种不加注释的代码,虽然每个命令都是我亲手写的,但是隔了这么久,第一眼看我也是有点懵的,所以从这篇教程开始,主要就是贴代码了。

#include <reg52.h>
#include <stdio.h>
#include <intrins.h>

sbit CS1=P1^7;
sbit CS2=P1^6;
sbit RST=P1^5;
sbit E=P3^3;
sbit RW=P3^4;
sbit RS=P3^5;
sbit BUSY=P2^7;
sbit RESET=P2^4;
sbit KEY1=P3^6;
sbit KEY2=P3^7;

sfr	 P1ASF=0x9d;
sfr  ADC_CONTR=0xbc;
sfr  ADC_RES=0xbd;
sfr  AUXR1=0xa2;
sfr  ADC_RESL=0xbe;

#define ADC_POWER 0x80
#define ADC_FLAG	0x10
#define ADC_START 0x08
#define ADC_SPEEDLL 0x00

int a,b,c,d,i,j,k,temp,currentRes=0,res=0,offset=0;
char code zhong[2][16]={{0x10,0x10,0x14,0xD4,0x54,0x54,0x54,0xFC,0x52,0x52,0x52,0xD3,0x12,0x10,0x10,0x00},
							{0x40,0x40,0x50,0x57,0x55,0x55,0x55,0x7F,0x55,0x55,0x55,0x57,0x50,0x40,0x40,0x00}};
char code liang[2][16]={{0x20,0x20,0x20,0xBE,0xAA,0xAA,0xAA,0xAA,0xAA,0xAA,0xAA,0xBE,0x20,0x20,0x20,0x00},
							{0x00,0x80,0x80,0xAF,0xAA,0xAA,0xAA,0xFF,0xAA,0xAA,0xAA,0xAF,0x80,0x80,0x00,0x00}};
char code ke[2][16]={{0x04,0x04,0xE4,0x24,0x24,0x24,0x24,0x3F,0x24,0x24,0x24,0x24,0xE4,0x04,0x04,0x00},
								{0x80,0x80,0x43,0x22,0x12,0x0E,0x02,0x02,0x02,0x7E,0x82,0x82,0x83,0x80,0xE0,0x00}};
char code number[10][16]={{0x00,0xE0,0x10,0x08,0x08,0x10,0xE0,0x00,0x00,0x0F,0x10,0x20,0x20,0x10,0x0F,0x00},/*"0",0*/
								{0x00,0x10,0x10,0xF8,0x00,0x00,0x00,0x00,0x00,0x20,0x20,0x3F,0x20,0x20,0x00,0x00},/*"1",1*/
								{0x00,0x70,0x08,0x08,0x08,0x88,0x70,0x00,0x00,0x30,0x28,0x24,0x22,0x21,0x30,0x00},/*"2",2*/
								{0x00,0x30,0x08,0x88,0x88,0x48,0x30,0x00,0x00,0x18,0x20,0x20,0x20,0x11,0x0E,0x00},/*"3",3*/
								{0x00,0x00,0xC0,0x20,0x10,0xF8,0x00,0x00,0x00,0x07,0x04,0x24,0x24,0x3F,0x24,0x00},/*"4",4*/
								{0x00,0xF8,0x08,0x88,0x88,0x08,0x08,0x00,0x00,0x19,0x21,0x20,0x20,0x11,0x0E,0x00},/*"5",5*/
								{0x00,0xE0,0x10,0x88,0x88,0x18,0x00,0x00,0x00,0x0F,0x11,0x20,0x20,0x11,0x0E,0x00},/*"6",6*/
								{0x00,0x38,0x08,0x08,0xC8,0x38,0x08,0x00,0x00,0x00,0x00,0x3F,0x00,0x00,0x00,0x00},/*"7",7*/
								{0x00,0x70,0x88,0x08,0x08,0x88,0x70,0x00,0x00,0x1C,0x22,0x21,0x21,0x22,0x1C,0x00},/*"8",8*/
								{0x00,0xE0,0x10,0x08,0x08,0x10,0xE0,0x00,0x00,0x00,0x31,0x22,0x22,0x11,0x0F,0x00},/*"9",9*/};

void wait(unsigned int count){
	while(count--){
		_nop_();
	}
}
void checkReady(bit cs){
	CS1= cs==0 ? 1:0;
	CS2= cs==1 ? 1:0;
	P2=0xff;
	E=1;
	RS=0;
	RW=1;
	while(BUSY==1);
	E=0;
	CS2=0;
	CS1=0;
}
void write_command(bit cs,char com){
	checkReady(cs);
	CS1= cs==0 ? 1:0;
	CS2= cs==1 ? 1:0;
	RS=0;
	RW=0;
	E=1;
	P2=com;
	wait(20);
	E=0;
	CS1=0;
	CS2=0;
}
void cls(bit cs){
	for(i=0;i<8;i++){
		write_command(cs,0xb8+i);
		for(j=0;j<64;j++){
			checkReady(cs);
			CS1= cs==0 ? 1:0;
			CS2= cs==1 ? 1:0;
			E=1;
			RS=1;
			RW=0;
			P2=0x00;
			wait(20);
			E=0;
		}
	}
}
void write_bytes(bit cs,char * buffer,int len){
	for(i=0;i<len;i++){
		checkReady(cs);
		CS1= cs==0 ? 1:0;
		CS2= cs==1 ? 1:0;
		E=1;
		RS=1;
		RW=0;
		P2=*(buffer+i);
		wait(20);
		E=0;
	}
}
void outChina(bit cs,char x,char y,char china[][16]){
	write_command(cs,x+0xb8);
	write_command(cs,y+0x40);
	write_bytes(cs,*china,16);
	
	write_command(cs,x+1+0xb8);
	write_command(cs,y+0x40);
	write_bytes(cs,*(china+1),16);
}
void outNumber(bit cs,char x,char y,int num){
	write_command(cs,x+0xb8);
	write_command(cs,y+0x40);
	write_bytes(cs,number[num],8);
	write_command(cs,x+1+0xb8);
	write_command(cs,y+0x40);
	write_bytes(cs,number[num]+8,8);
}
void showResult(int num){
	a=num/1000;
	b=(num-a*1000)/100;
	c=(num-a*1000-b*100)/10;
	d=num-a*1000-b*100-c*10;
	outNumber(1,4,0,d);
	outNumber(0,4,53,c);
	outNumber(0,4,43,b);
	outNumber(0,4,33,a);
}
void initLCD(){
	cls(1);
	write_command(0,0x3f);
	cls(0);
	write_command(1,0x3f);
	outChina(0,1,40,zhong);
	outChina(1,1,7,liang);
	outChina(1,4,16,ke);
}
void initADC(){
	P1ASF=0x01;
	ADC_RES=0x00;
	ADC_CONTR=ADC_POWER | ADC_SPEEDLL | ADC_START | 0;
	wait(20);
	AUXR1=0x04;
	IE=0xa0;
}
void adc_isr() interrupt 5 using 1
{
	ADC_CONTR &=!ADC_FLAG;
	res=ADC_RESL+ADC_RES*256;
	ADC_CONTR=ADC_POWER | ADC_SPEEDLL | ADC_START | 0;
}
void waitL(int count){
	k=0xffff;
	while(count--){
		while(k--);
	}
}

void main(){
	initLCD();
	initADC();
	res=0;
	showResult(i);
	while(1){
		P0=0x03;
		if(!KEY1){
			showResult(9999);
			offset=res;
		}else{
			if(res!=currentRes){
				currentRes=res;
				temp=currentRes-offset;
				if(temp<0){
					showResult(0);
				}else{
					showResult(temp);
				}
			}
			waitL(0x03);
		}
	}
}

  虽然代码涉及的硬件知识记不清了,但是这个单片机实验系列的代码的整体框架都是一样的,这个看main函数就能看出来,最开始的都是初始化硬件,然后进入一个死循环,这就算是进入正题了,在这个死循环里一般都是读一读按键,刷新刷新屏幕什么的,死循环的过程中也许会有中断发生,但是这对主体的死循环没影响,中断只是改变了要显示的数据,死循环的过程并没变。

  这个系列的代码虽然没注释,但是只要你掌握了硬件的工作过程,就一定能看懂我写的是什么意思,我上课的时候班里就有现成的代码,而且注释详细,几乎每一行都有,可是对于不懂硬件的工作过程的人来说,有注释他们照样看不懂。所以这个系列的博客意在给掌握了硬件知识,却缺乏编程思想的同学使用,起到一个抛砖引玉的作用。对于什么都不想学却想拿学分的童鞋:不劳而获是不存在滴,赶紧努力吧。(原创作品,转载请注明)

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值