#coding=utf-8 import numpy as np import pandas as pd import datetime #导入数据 df_ferrara = pd.read_csv('WeatherData/ferrara_270615.csv') df_milano = pd.read_csv('WeatherData/milano_270615.csv') df_mantova = pd.read_csv('WeatherData/mantova_270615.csv') df_ravenna = pd.read_csv('WeatherData/ravenna_270615.csv') df_torino = pd.read_csv('WeatherData/torino_270615.csv') df_asti = pd.read_csv('WeatherData/asti_270615.csv') df_bologna = pd.read_csv('WeatherData/bologna_270615.csv') df_piacenza = pd.read_csv('WeatherData/piacenza_270615.csv') df_cesena = pd.read_csv('WeatherData/cesena_270615.csv') df_faenza = pd.read_csv('WeatherData/faenza_270615.csv') #导入库 import matplotlib.pyplot as plt import matplotlib.dates as mdates from dateutil import parser # 取出我们要分析的温度和日期数据 y1 = df_milano['temp'] x1 = df_milano['day'] # print(df_milano) # 把日期数据转换成 datetime 的格式 day_milano = [parser.parse(x) for x in x1] print(day_milano) # 调用 subplot 函数, fig 是图像对象,ax 是坐标轴对象 fig, ax = plt.subplots() # 调整x轴坐
Python 进行气象预测
最新推荐文章于 2025-07-15 16:19:48 发布
