PAT甲级1064 log()函数的换底公式 BST 递归

本文探讨了如何从一组非负整数键构建一个既为二叉搜索树又为完全二叉树的数据结构。通过递归算法实现层级遍历,最终输出完全二叉搜索树的层级遍历序列。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目

A Binary Search Tree (BST) is recursively defined as a binary tree which has the following properties:

The left subtree of a node contains only nodes with keys less than the node’s key.
The right subtree of a node contains only nodes with keys greater than or equal to the node’s key.
Both the left and right subtrees must also be binary search trees.
A Complete Binary Tree (CBT) is a tree that is completely filled, with the possible exception of the bottom level, which is filled from left to right.

Now given a sequence of distinct non-negative integer keys, a unique BST can be constructed if it is required that the tree must also be a CBT. You are supposed to output the level order traversal sequence of this BST.

Input Specification:

Each input file contains one test case. For each case, the first line contains a positive integer N (<=1000). Then N distinct non-negative integer keys are given in the next line. All the numbers in a line are separated by a space and are no greater than 2000.

Output Specification:

For each test case, print in one line the level order traversal sequence of the corresponding complete binary search tree. All the numbers in a line must be separated by a space, and there must be no extra space at the end of the line.

Sample Input:
10
1 2 3 4 5 6 7 8 9 0
Sample Output:
6 3 8 1 5 7 9 0 2 4


题解

#include <iostream>
#include <vector>
#include <algorithm>
#include <cmath>
using namespace std;
vector<int> in, level;
void levelorder(int start, int end, int index) {
    if(start > end) return ;
    int n = end - start + 1;
    int l =log(n+1)/log(2); // 如果不是满二叉树,这就是除了最后一层的层数,如果是满二叉树,就是二叉树层数。这里是log的换底公式
    int leave = n - (pow(2, l) - 1);// 最后一层的叶子节点数
    int root = start + (pow(2, l - 1) - 1) + min((int)pow(2, l - 1), leave); // pow(2, l - 1) - 1是除了root结点所在层和最后一层外,左子树的结点个数,pow(2, l - 1) 是根节点的左子树中,你要找的结点和最后一层夹着的几个结点,min(pow(2, l - 1), leave)是最后一层在根节点左子树的结点数
    level[index] = in[root];
    levelorder(start, root - 1, 2 * index + 1);
    levelorder(root + 1, end, 2 * index + 2);
}
int main() {
    int n;
    scanf("%d", &n);
    in.resize(n);
    level.resize(n);
    for(int i = 0 ; i < n; i++)
        scanf("%d", &in[i]);
    sort(in.begin(), in.end());
    levelorder(0, n - 1, 0);
    printf("%d", level[0]);
    for(int i = 1; i < n; i++)
        printf(" %d", level[i]);
    return 0;
}

给你一列数字比如0~9,告诉你这些组成了二叉搜索树,你怎么确定哪个是根结点。根本来说是这样一个问题。
我们可以画出这个二叉搜索树,它是一个完全二叉树,根节点的左子树也是一个完全二叉树,可以这样递归。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值