题目
A Binary Search Tree (BST) is recursively defined as a binary tree which has the following properties:
The left subtree of a node contains only nodes with keys less than the node’s key.
The right subtree of a node contains only nodes with keys greater than or equal to the node’s key.
Both the left and right subtrees must also be binary search trees.
A Complete Binary Tree (CBT) is a tree that is completely filled, with the possible exception of the bottom level, which is filled from left to right.
Now given a sequence of distinct non-negative integer keys, a unique BST can be constructed if it is required that the tree must also be a CBT. You are supposed to output the level order traversal sequence of this BST.
Input Specification:
Each input file contains one test case. For each case, the first line contains a positive integer N (<=1000). Then N distinct non-negative integer keys are given in the next line. All the numbers in a line are separated by a space and are no greater than 2000.
Output Specification:
For each test case, print in one line the level order traversal sequence of the corresponding complete binary search tree. All the numbers in a line must be separated by a space, and there must be no extra space at the end of the line.
Sample Input:
10
1 2 3 4 5 6 7 8 9 0
Sample Output:
6 3 8 1 5 7 9 0 2 4
题解
#include <iostream>
#include <vector>
#include <algorithm>
#include <cmath>
using namespace std;
vector<int> in, level;
void levelorder(int start, int end, int index) {
if(start > end) return ;
int n = end - start + 1;
int l =log(n+1)/log(2); // 如果不是满二叉树,这就是除了最后一层的层数,如果是满二叉树,就是二叉树层数。这里是log的换底公式
int leave = n - (pow(2, l) - 1);// 最后一层的叶子节点数
int root = start + (pow(2, l - 1) - 1) + min((int)pow(2, l - 1), leave); // pow(2, l - 1) - 1是除了root结点所在层和最后一层外,左子树的结点个数,pow(2, l - 1) 是根节点的左子树中,你要找的结点和最后一层夹着的几个结点,min(pow(2, l - 1), leave)是最后一层在根节点左子树的结点数
level[index] = in[root];
levelorder(start, root - 1, 2 * index + 1);
levelorder(root + 1, end, 2 * index + 2);
}
int main() {
int n;
scanf("%d", &n);
in.resize(n);
level.resize(n);
for(int i = 0 ; i < n; i++)
scanf("%d", &in[i]);
sort(in.begin(), in.end());
levelorder(0, n - 1, 0);
printf("%d", level[0]);
for(int i = 1; i < n; i++)
printf(" %d", level[i]);
return 0;
}
给你一列数字比如0~9,告诉你这些组成了二叉搜索树,你怎么确定哪个是根结点。根本来说是这样一个问题。
我们可以画出这个二叉搜索树,它是一个完全二叉树,根节点的左子树也是一个完全二叉树,可以这样递归。